题目内容

已知a>0,b>0,且a+b=1. 求证: (a+)(b+)≥.

证明略


解析:

证法一:(分析综合法)

欲证原式,即证4(ab)2+4(a2+b2)-25ab+4≥0,

即证4(ab)2-33(ab)+8≥0,即证abab≥8.

a>0,b>0,a+b=1,∴ab≥8不可能成立

∵1=a+b≥2,∴ab,从而得证.

证法二: (均值代换法)

a=+t1b=+t2.

a+b=1,a>0,b>0,∴t1+t2=0,|t1|<,|t2|<

显然当且仅当t=0,即a=b=时,等号成立.

证法三:(比较法)

a+b=1,a>0,b>0,∴a+b≥2,∴ab

证法四:(综合法)

a+b=1, a>0,b>0,∴a+b≥2,∴ab.

   

证法五: (三角代换法)

a>0,b>0,a+b=1,故令a=sin2αb=cos2αα∈(0,)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网