题目内容
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x+18y-7=0垂直,导函数f′(x)的最小值为12.
(1)求a,b,c的值;
(2)设g(x)=
,当x>0时,求g(x)的最小值.
(1)求a,b,c的值;
(2)设g(x)=
| f(x) |
| x2 |
(1)∵f(x)为奇函数,
∴f(-x)=-f(x),即-ax3-bx+c=-ax3-bx-c,∴c=0,
又∵f′(x)=3ax2+b的最小值为12,∴b=12;
又直线x+18y-7=0的斜率为-
,因此,f'(1)=3a+b=18,∴a=2,
∴a=2,b=12,c=0为所求.
(2)由(1)得f(x)=2x3+12x,∴当x>0时,g(x)=
=2(x+
)≥2•2
=4
,
∴g(x)的最小值为4
.
∴f(-x)=-f(x),即-ax3-bx+c=-ax3-bx-c,∴c=0,
又∵f′(x)=3ax2+b的最小值为12,∴b=12;
又直线x+18y-7=0的斜率为-
| 1 |
| 18 |
∴a=2,b=12,c=0为所求.
(2)由(1)得f(x)=2x3+12x,∴当x>0时,g(x)=
| f(x) |
| x2 |
| 6 |
| x |
x•
|
| 6 |
∴g(x)的最小值为4
| 6 |
练习册系列答案
相关题目
| x |
| 1 | ||
|
| ∫ | 2π π |
A、-
| ||
| B、-160 | ||
| C、160 | ||
| D、20 |