题目内容

已知等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=
1
n(an+3)
(n∈N*),Sn=b1+b2+…+bn
,求Sn
1
36
分析:(1)由等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列,知(a1+d)(a1+13d)=(a1+4d)2,由此能求出数列{an}的通项公式.
(2)由bn=
1
n(an+3)
=
1
2n(n+1)
=
1
2
(
1
n
-
1
n+1
)
,利用裂项求和法能求出Sn.从而得到Sn
1
36
解答:解:(1)∵等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列,
(a1+d)(a1+13d)=(a1+4d)2
整理得:2a1d=d2
∵a1=1,解得d=2(d=0舍去)
an=2n-1(n∈N*)
(2)bn=
1
n(an+3)
=
1
2n(n+1)
=
1
2
(
1
n
-
1
n+1
)

∴Sn=b1+b2+…+bn
=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]

=
1
2
(1-
1
n+1
)

∴当n=1时,Sn取最小值S1=
1
2
(1-
1
2
)
=
1
4
1
36

Sn
1
36
点评:本题考查数列通项公式的求法,考查不等式的证明,解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网