题目内容
已知等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=
(n∈N*),Sn=b1+b2+…+bn,求Sn>
.
(1)求数列{an}的通项公式;
(2)设bn=
| 1 |
| n(an+3) |
| 1 |
| 36 |
分析:(1)由等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列,知(a1+d)(a1+13d)=(a1+4d)2,由此能求出数列{an}的通项公式.
(2)由bn=
=
=
(
-
),利用裂项求和法能求出Sn.从而得到Sn>
.
(2)由bn=
| 1 |
| n(an+3) |
| 1 |
| 2n(n+1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 36 |
解答:解:(1)∵等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列,
∴(a1+d)(a1+13d)=(a1+4d)2
整理得:2a1d=d2,
∵a1=1,解得d=2(d=0舍去)
∴an=2n-1(n∈N*),
(2)bn=
=
=
(
-
),
∴Sn=b1+b2+…+bn
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
),
∴当n=1时,Sn取最小值S1=
(1-
)=
>
.
∴Sn>
.
∴(a1+d)(a1+13d)=(a1+4d)2
整理得:2a1d=d2,
∵a1=1,解得d=2(d=0舍去)
∴an=2n-1(n∈N*),
(2)bn=
| 1 |
| n(an+3) |
| 1 |
| 2n(n+1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=b1+b2+…+bn
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| n+1 |
∴当n=1时,Sn取最小值S1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 36 |
∴Sn>
| 1 |
| 36 |
点评:本题考查数列通项公式的求法,考查不等式的证明,解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目