题目内容

已知f(x)=2012sinx+2011x3,且x∈(-1,1),若f(1-a)+f(1-a2)<0,则a的取值范围是


  1. A.
    (0,2)
  2. B.
    数学公式
  3. C.
    (-2,0)
  4. D.
    数学公式
D
分析:在区间(-1,1)上,由f(-x)=-f(x)、f(x)>0可知函数f(x)是奇函数且单调递增,由此可求出a的取值范围,进而选出答案.
解答:∵f(x)=2012sinx+2011x3,?x∈(-1,1),则f(-x)=-f(x),∴f(x)在区间(-1,1)上是奇函数;
又f(x)=2012cosx+6033x2,x∈(-1,1),∴f(x)>0,∴f(x)在区间(-1,1)上单调递增;
由f(1-a)+f(1-a2)<0,∴f(1-a)<-f(1-a2),∴f(1-a)<f(a2-1),
∴-1<1-a<a2-1<1,解之得
所以a的取值范围是(1,).
故选 D.
点评:本题考查了函数的奇偶性、单调性,充分理解函数的奇偶性、单调性是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网