题目内容

已知函数f(x)=cos(2x-
π3
)+sin2x-cos2x

(I)求函数f(x)的最小正周期及图象的对称轴方程;
(II)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
分析:(I)利用两角差的余弦函数展开函数,再用二倍角公式以及两角和的正弦函数化简为sin(2x-
π
6
)
,然后求函数f(x)的最小正周期及图象的对称轴方程;
(II)化简函数g(x)=[f(x)]2+f(x),把sin(2x-
π
6
)
看为一个未知数,配成平方关系,然后求g(x)的值域.
解答:解:(I)f(x)=
1
2
cos2x+
3
2
sin2x+sin2x-cos2x
=
1
2
cos2x+
3
2
sin2x-cos2x=sin(2x-
π
6
)

∴最小正周期T=
2

2x-
π
6
=kπ+
π
2
(k∈Z)

x=
2
+
π
3
(k∈Z)

函数图象的对称轴方程为x=
2
+
π
3
(k∈Z)

(II)g(x)=[f(x)]2+f(x)=sin2(2x-
π
6
)+sin(2x-
π
6
)=[sin(2x-
π
6
)+
1
2
]2-
1
4

sin(2x-
π
6
)=-
1
2
时,g(x)取得最小值-
1
4

sin(2x-
π
6
)=1
时,g(x)取得最大值2,
所以g(x)的值域为[-
1
4
,2]
点评:本题是基础题,考查三角函数的性质,二倍角公式,两角和与差的三角函数,三角函数的值域的求法,考查计算能力,基本知识的灵活应用能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网