题目内容

已知数列{an}的通项公式为an=|n-13|,则满足ak+ak+1+…+ak+19=102的整数k(  )
A.有3个B.有2个C.有1个D.不存在
∵an=|n-13|,
若k≥13,则ak=k-13,
∴ak+ak+1+…+ak+19=
k-13+(k-13+19)
2
×19
=102,与k∈N*矛盾,
∴1≤k<13,
∴ak+ak+1+…+ak+19=(13-k)+(12-k)+…+0+1+…+(k+6)
=
13-k
2
×(14-k)+
7+k
2
×(k+6)
=102
解得:k=2或k=5
∴满足ak+ak+1+…+ak+19=102的整数k=2,5,
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网