题目内容

如图,在四棱锥P-ABCD中,PD⊥面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.
(1)证明:PA面BDE;
(2)证明:面PAC⊥面PDB.
精英家教网
证明:(1)连接AC,交BD于O,连接OE
∵DB平分∠ADC,AD=CD∴AC⊥BD且OC=OA
又∵E为PC的中点∴OEPA
又∵OE?面BDE,PA?面BDE∴PA面BDE
(2)由(1)知AC⊥DB
∵PD⊥面ABCD,AC?面ABCD∴AC⊥PD
∵PD?面PDB,BD?面PDB,PD∩DB=D∴AC⊥面PDB
又AC?面PAC∴面PAC⊥面PDB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网