题目内容
设a>0且a≠1,命题p:函数f(x)=1oga(1-x)-1oga(x+1)为减函数;命题q:不等式x2+ax+2<0有解.如果“p或q”为真,“p且q”为假,求a的取值范围.
若命题p:函数f(x)=1oga(1-x)-1oga(x+1)=1oga(
-1)为减函数,为真命题,
则a>1;
若命题q:不等式x2+ax+2<0有解,为真命题,
则△=a2-8>0,则a>2
或a<-2
又∵“p或q”为真命题,“p且q”为假命题,
则p,q恰好一真一假
当命题p为真命题,命题q为假命题时,1<a≤2
;
当命题p为假命题,命题q为真命题时,a≤-2
故满足条件的实数a的取值范围是(-∞,-2
]∪(1,2
]
| 2 |
| x+1 |
则a>1;
若命题q:不等式x2+ax+2<0有解,为真命题,
则△=a2-8>0,则a>2
| 2 |
| 2 |
又∵“p或q”为真命题,“p且q”为假命题,
则p,q恰好一真一假
当命题p为真命题,命题q为假命题时,1<a≤2
| 2 |
当命题p为假命题,命题q为真命题时,a≤-2
| 2 |
故满足条件的实数a的取值范围是(-∞,-2
| 2 |
| 2 |
练习册系列答案
相关题目