题目内容
已知数列{an}的前n项和Sn和通项an之间满足关系Sn=| 3 |
| 2 |
(1)求数列{an}的通项公式;
(2)设f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
分析:(1)由题意知an=
(an-1)-
(an-1-1)=
an-
an-1,所以an=3an-1.由S1=a1=
(a1-1)得a1=3.所以an=3×3n-1=3n.
(2)由题意知
=
=2(
-
),Tn=2[(1-
)+(
-
)++(
-
)]=2(1-
).由此可知Tn<2.
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
(2)由题意知
| 1 |
| bn |
| 2 |
| n(1+n) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
解答:解:(1)当n≥2时,an=
(an-1)-
(an-1-1)=
an-
an-1,
∴an=3an-1.(3分)
又由S1=a1=
(a1-1)得a1=3.
∴数列{an}是首项a1=3、公比为3的等比数列.∴an=3×3n-1=3n(7分)
(2)∵f(x)=log3x,
∴bn=log3a1+log3a2++log3an=log3(a1a2an)
∴bn=log33^1+2++n.(10分)
∴
=
=2(
-
)
∴Tn=
+
++
=2[(1-
)+(
-
)++(
-
)]=2(1-
).
∴Tn<2.(14分)
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
∴an=3an-1.(3分)
又由S1=a1=
| 3 |
| 2 |
∴数列{an}是首项a1=3、公比为3的等比数列.∴an=3×3n-1=3n(7分)
(2)∵f(x)=log3x,
∴bn=log3a1+log3a2++log3an=log3(a1a2an)
∴bn=log33^1+2++n.(10分)
∴
| 1 |
| bn |
| 2 |
| n(1+n) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
∴Tn<2.(14分)
点评:本题考查数列的性质和应用,解题时要认真审题,注意公式的灵活运用和计算能力的培养.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |