题目内容

定义在正实数上的连续函数f(x)满足:f(1)=2,且对于任意的正实数x、y,均有f(x+y)=f(x)+f(y),则f(4)=(  )
A.4B.6C.8D.16
∵对于任意的正实数x、y,均有f(x+y)=f(x)+f(y),
∴f(4)=f(2+2)=f(2)+f(2).
又f(2)=f(1+1)=f(1)+f(1)
∴f(4)=4f(1)=4×2=8.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网