题目内容

如图,在等腰梯形ABCD中,AB∥CD且AB=2AD,设∠DAB=θ,θ∈(0,
π2
),以A、B为焦点且过点D的双曲线的离心率为e1,以C、D为焦点且过点A的椭圆的离心率为e2,则e1•e2=
1
1
分析:连接BD、AC,假设AD=t,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=
c
a
可表示出e1,同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的值.
解答:解:连接BD,AC,设AD=t,
则BD=
t2+4t2-2•t•2tcosθ
=
5t2-4t2cosθ

∴双曲线中a=
5t2-4t2cosθ
-t
2

e1=
t
5t2-4t2cosθ
-t
2

∵AC=BD,
∴椭圆中CD=2t(1-cosθ)=2c′,
∴c'=t(1-cosθ),
AC+AD=
5t2-4t2cosθ
+t,
∴a'=
1
2
5t2-4t2cosθ
+t)
e2=
c′
a′
=
t(1-cosθ)
1
2
(
5t2-4t2cosθ
+t)

∴e1e2=
t
5t2-4t2cosθ
-t
2
×
t(1-cosθ)
1
2
(
5t2-4t2cosθ
+t)
=1
故答案为:1.
点评:本小题主要考查椭圆的简单性质、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网