ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
| OB |
| F1B |
| |F1F2 |
| F1B |
| |F1F2 |
| 3 |
| 2 |
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÇóÖ¤Ö±ÏßlÓëyÖáÏཻÓÚ¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£»
£¨¢ó£©µ±ÏÒMNµÄÖеãPÂäÔÚËıßÐÎF1AF2BÄÚ£¨°üÀ¨±ß½ç£©Ê±£¬ÇóÖ±ÏßlµÄбÂʵÄȡֵ·¶Î§£®
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÌâÒâ¿ÉÖª
ºÍ
£¬Í¨¹ý|
|¡¢|
|¡¢
|³ÉµÈ±ÈÊýÁÐÍÆ¶Ï³öa2=2bc£¬½ø¶ø¸ù¾Ýa£¬bºÍcµÄ¹ØÏµÇóµÃaºÍbµÄ¹ØÏµ£¬ÀûÓÃ
=2ÇóµÃb£¬Ôòa¿ÉÇó£¬ÍÖÔ²µÄ·½³Ì¿ÉµÃ£®
£¨¢ò£©Éè³öÖ±ÏßlµÄ·½³Ì£¬ºÍM£¬NµÄ×ø±ê£¬°ÑÖ±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí±íʾ³öx1+x2ºÍx1x2£¬½ø¶øÀûÓÃk1•k2=
ÇóµÃb£¬½ø¶ø¿ÉÇóµÃÖ±ÏßlÓëyÖáÏཻµÄµã£®
£¨III£©ÓÉ£¨¢ò£©ÖеÄÒ»Ôª¶þ´Î·½³Ì¿ÉÇóµÃÅбðʽ´óÓÚ0ÇóµÃkµÄ·¶Î§£¬ÉèÏÒABµÄÖеãP×ø±êÔò¿É·Ö±ð±íʾ³öx0ºÍy0£¬pµãÔÚxÖáÉÏ·½£¬Ö»ÐèλÓÚÈý½ÇÐÎMF1F2ÄھͿÉÒÔ£¬½ø¶øÁªÁ¢²»µÈʽ×飬ÇóµÃkµÄ·¶Î§£®
| |OB| |
| |F1B| |
| OB |
| F1B |
| |F1F2 |
| F1B• |
| F1F2 |
£¨¢ò£©Éè³öÖ±ÏßlµÄ·½³Ì£¬ºÍM£¬NµÄ×ø±ê£¬°ÑÖ±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí±íʾ³öx1+x2ºÍx1x2£¬½ø¶øÀûÓÃk1•k2=
| 3 |
| 2 |
£¨III£©ÓÉ£¨¢ò£©ÖеÄÒ»Ôª¶þ´Î·½³Ì¿ÉÇóµÃÅбðʽ´óÓÚ0ÇóµÃkµÄ·¶Î§£¬ÉèÏÒABµÄÖеãP×ø±êÔò¿É·Ö±ð±íʾ³öx0ºÍy0£¬pµãÔÚxÖáÉÏ·½£¬Ö»ÐèλÓÚÈý½ÇÐÎMF1F2ÄھͿÉÒÔ£¬½ø¶øÁªÁ¢²»µÈʽ×飬ÇóµÃkµÄ·¶Î§£®
½â´ð£º½â£º£¨¢ñ£©Ò×Öª
=b
=a¡¢
=2c£¨ÆäÖÐc=
£©£¬
ÔòÓÉÌâÒâÖªÓÐa2=2bc£®ÓÖ¡ßa2=b2+c2£¬ÁªÁ¢µÃb=c£®¡àa=
b£®
¡ß
•
= 2£¬¡à2accos45¡ã=2
¡àb2=1a2=2£®
¹ÊÍÖÔ²CµÄ·½³ÌΪ
+y2=1£®
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+b£¬M¡¢N×ø±ê·Ö±ðΪM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£®
ÓÉ
?£¨1+2k2£©x2+4kbx+2b-2=0£®
¡àx2+x1=-
£¬x1x2=
£®
¡ßk1=
£¬k2=
£®
¡àk1k2=
•
=
=
½«Î¤´ï¶¨Àí´úÈ룬²¢ÕûÀíµÃ
=3£¬½âµÃb=2£®
¡àÖ±ÏßlÓëyÖáÏཻÓÚ¶¨µã£¨0£¬2£©£®
£¨III£©ÓÉ£¨¢ò£©ÖУ¨1+2k2£©x2+8kx+6=0£¬ÆäÅбðʽ¡÷£¾0£¬µÃk2£¾
£®¢Ù
ÉèÏÒABµÄÖеãP×ø±êΪ£¨x0£¬y0£©£¬Ôòx0=-
£¬y0=k0+2=
£¾0£¬
¡àpµãÔÚxÖáÉÏ·½£¬Ö»ÐèλÓÚÈý½ÇÐÎMF1F2ÄھͿÉÒÔ£¬¼´Âú×ã
½«×ø±ê´úÈ룬ÕûÀíµÃ
½âµÃ
¢Ú
ÓÉ¢Ù¢ÚµÃËùÇó·¶Î§Îªk¡Ý1+
»òK¡Ü-1-
£®
| |OB| |
| |F1B| |
| |F1F2| |
| a2-b2 |
ÔòÓÉÌâÒâÖªÓÐa2=2bc£®ÓÖ¡ßa2=b2+c2£¬ÁªÁ¢µÃb=c£®¡àa=
| 2 |
¡ß
| |F1B| |
| |F1F2| |
¡àb2=1a2=2£®
¹ÊÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 2 |
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+b£¬M¡¢N×ø±ê·Ö±ðΪM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£®
ÓÉ
|
¡àx2+x1=-
| 4kb |
| 1+2k2 |
| 2b2-2 |
| 1+2k2 |
¡ßk1=
| y1+1 |
| x1 |
| y2+1 |
| x2 |
¡àk1k2=
| (k1+1+b) |
| x1 |
| (kx2+1+b) |
| x2 |
| k2x1x2+(1+b)k(x1+x2)+(1+b)2 |
| x1x2 |
| 3 |
| 2 |
½«Î¤´ï¶¨Àí´úÈ룬²¢ÕûÀíµÃ
| 2k2(b-1)-4k2b+(1+2k2) (b+1) |
| b-1 |
¡àÖ±ÏßlÓëyÖáÏཻÓÚ¶¨µã£¨0£¬2£©£®
£¨III£©ÓÉ£¨¢ò£©ÖУ¨1+2k2£©x2+8kx+6=0£¬ÆäÅбðʽ¡÷£¾0£¬µÃk2£¾
| 3 |
| 2 |
ÉèÏÒABµÄÖеãP×ø±êΪ£¨x0£¬y0£©£¬Ôòx0=-
| 4kb |
| 1+2k2 |
| 2 |
| 1+2k2 |
¡àpµãÔÚxÖáÉÏ·½£¬Ö»ÐèλÓÚÈý½ÇÐÎMF1F2ÄھͿÉÒÔ£¬¼´Âú×ã
|
|
½âµÃ
|
ÓÉ¢Ù¢ÚµÃËùÇó·¶Î§Îªk¡Ý1+
| ||
| 2 |
| ||
| 2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌ⣮¿¼²éÁËѧÉúת»¯Ó뻯¹é˼ÏëµÄÔËÓúͻù´¡ÖªÊ¶µÄÊìÁ·ÕÆÎÕ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿