题目内容
已知函数f(x)=(x2﹣3x+3)·ex定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.
(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;
(Ⅱ)求证:n>m;
(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足
,并确定这样的x0的个数.
(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;
(Ⅱ)求证:n>m;
(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足
(Ⅰ)解:因为f′(x)=(2x﹣3)ex+(x2﹣3x+3)·ex,
由f′(x)>0
x>1或x<0,
由f′(x)<0
0<x<1,
∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
∵函数f(x)在[﹣2,t]上为单调函数,
∴﹣2<t≤0,
(Ⅱ)证:因为函数f(x)在(﹣∞,0)∪(1,+∞)上单调递增,
在(0,1)上单调递减,
所以f(x)在x=1处取得极小值e,
又f(﹣2)=13e﹣2<e,
所以f(x)在[2,+∞)上的最小值为f(﹣2),
从而当t>﹣2时,f(﹣2)<f(t),即m<n,
(Ⅲ)证:因为
,
∴
,即为x02﹣x0=
,
令g(x)=x2﹣x﹣
,
从而问题转化为证明方程g(x)=
=0在(﹣2,t)上有解并讨论解的个数,因为g(﹣2)=6﹣
(t﹣1)2=﹣
,
g(t)=t(t﹣1)﹣
=
,
所以当t>4或﹣2<t<1时,g(﹣2)·g(t)<0,
所以g(x)=0在(﹣2,t)上有解,且只有一解,
当1<t<4时,g(﹣2)>0且g(t)>0,
但由于g(0)=﹣
<0,所以g(x)=0在(﹣2,t)上有解,且有两解,
当t=1时,g(x)=x2﹣x=0,解得x=0或1,
所以g(x)=0在(﹣2,t)上有且只有一解,
当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,
综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足
,
且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,
当1<t<4时,有两个x0适合题意.
由f′(x)>0
由f′(x)<0
∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
∵函数f(x)在[﹣2,t]上为单调函数,
∴﹣2<t≤0,
(Ⅱ)证:因为函数f(x)在(﹣∞,0)∪(1,+∞)上单调递增,
在(0,1)上单调递减,
所以f(x)在x=1处取得极小值e,
又f(﹣2)=13e﹣2<e,
所以f(x)在[2,+∞)上的最小值为f(﹣2),
从而当t>﹣2时,f(﹣2)<f(t),即m<n,
(Ⅲ)证:因为
∴
令g(x)=x2﹣x﹣
从而问题转化为证明方程g(x)=
g(t)=t(t﹣1)﹣
所以当t>4或﹣2<t<1时,g(﹣2)·g(t)<0,
所以g(x)=0在(﹣2,t)上有解,且只有一解,
当1<t<4时,g(﹣2)>0且g(t)>0,
但由于g(0)=﹣
当t=1时,g(x)=x2﹣x=0,解得x=0或1,
所以g(x)=0在(﹣2,t)上有且只有一解,
当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,
综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足
且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,
当1<t<4时,有两个x0适合题意.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|