题目内容
(2009•朝阳区二模)设数列{an}的首项a1=1,前n项和为Sn,且点(Sn-1,Sn)(n∈N*,n≥2)在直线(2t+3)x-3ty+3t=0(t为与n无关的正实数)上.
(Ⅰ) 求证:数列{an}是等比数列;
(Ⅱ) 记数列{an}的公比为f(t),数列{bn}满足b1=1,bn=f(
)(n∈N*,n≥2).
设cn=b2n-1b2n-b2nb2n+1,求数列{cn}的前n项和Tn;
(Ⅲ) 在(Ⅱ)的条件下,设dn=(1+
)n(n∈N*),证明dn<dn+1.
(Ⅰ) 求证:数列{an}是等比数列;
(Ⅱ) 记数列{an}的公比为f(t),数列{bn}满足b1=1,bn=f(
| 1 |
| bn-1 |
设cn=b2n-1b2n-b2nb2n+1,求数列{cn}的前n项和Tn;
(Ⅲ) 在(Ⅱ)的条件下,设dn=(1+
| 1 |
| 3bn-1 |
分析:(Ⅰ)因为点(Sn-1,Sn)(n∈N*,n≥2)在直线(2t+3)x-3ty+3t=0(t为与n无关的正实数)上,所以(2t+3)Sn-1-3tSn+3t=0,由此能够证明{an}是等比数列.
(Ⅱ) 由(Ⅰ) 知f(t)=
,从而bn=f(
)=
=
+bn-1,所以bn-bn-1=
(n∈N*,n≥2).由此能够求出数列{cn}的前n项和Tn.
(Ⅲ) 由(Ⅱ)知dn=(1+
)n,则dn+1=[1+
]n+1.将dn=(1+
)n用二项式定理展开,共有n+1项,Tk+1=
(
)k=
•
•
=
•
•(1-
)(1-
)…(1-
),同理,dn+1=[1+
]n+1用二项式定理展开,第n+2项Un+2=
[
]n+1>0,由此能够证明dn<dn+1.
(Ⅱ) 由(Ⅰ) 知f(t)=
| 2t+3 |
| 3t |
| 1 |
| bn-1 |
2•
| ||
3•
|
| 2 |
| 3 |
| 2 |
| 3 |
(Ⅲ) 由(Ⅱ)知dn=(1+
| 1 |
| 2n |
| 1 |
| 2(n+1) |
| 1 |
| 2n |
| C | k n |
| 1 |
| 2n |
| 1 |
| 2k |
| 1 |
| k! |
| n(n-1)…(n-k+1) |
| nk |
| 1 |
| 2k |
| 1 |
| k! |
| 1 |
| n |
| 2 |
| n |
| k-1 |
| n |
| 1 |
| 2(n+1) |
| C | n+1 n+1 |
| 1 |
| 2(n+1) |
解答:解:(Ⅰ)因为点(Sn-1,Sn)(n∈N*,n≥2)在直线(2t+3)x-3ty+3t=0(t为与n无关的正实数)上,
所以(2t+3)Sn-1-3tSn+3t=0,
即有3tSn-(2t+3)Sn-1=3t(n∈N*,n≥2).
当n=2时,3t(a1+a2)-(2t+3)a1=3t.
由a1=1,解得a2=
,
所以
=
.
当n≥2时,有3tSn+1-(2t+3)Sn=3t①
3tSn-(2t+3)Sn-1=3t②
①-②,得 3tan+1-(2t+3)an=0,
整理得
=
.
综上所述,知
=
(n∈N*),
因此{an}是等比数列. …(5分)
(Ⅱ) 由(Ⅰ) 知f(t)=
,从而bn=f(
)=
=
+bn-1,
所以bn-bn-1=
(n∈N*,n≥2).
因此,{bn}是等差数列,并且bn=b1+(n-1)d=
n+
.
所以,Tn=c1+c2+c3+…+cn
=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
=-2d(b2+b4+…+b2n)=-
•
=-
•
=-
n2-
n. …(10分)
(Ⅲ) 由(Ⅱ)知dn=(1+
)n,
则dn+1=[1+
]n+1.
将dn=(1+
)n用二项式定理展开,
共有n+1项,其第k+1项(0≤k≤n)为Tk+1=
(
)k=
•
•
=
•
•(1-
)(1-
)…(1-
),
同理,dn+1=[1+
]n+1用二项式定理展开,
共有n+2项,第n+2项为Un+2=
[
]n+1>0,
其前n+1项中的第k+1项(0≤k≤n)为Uk+1=
•
•(1-
)(1-
)…(1-
),
由1-
<1-
,1-
<1-
,…,1-
<1-
,k=2,3,…,n,
得Tk+1<Uk+1,k=2,3,…,n,
又T1=U1,T2=U2,Un+2>0,
∴dn<dn+1. …(13分)
所以(2t+3)Sn-1-3tSn+3t=0,
即有3tSn-(2t+3)Sn-1=3t(n∈N*,n≥2).
当n=2时,3t(a1+a2)-(2t+3)a1=3t.
由a1=1,解得a2=
| 2t+3 |
| 3t |
所以
| a2 |
| a1 |
| 2t+3 |
| 3t |
当n≥2时,有3tSn+1-(2t+3)Sn=3t①
3tSn-(2t+3)Sn-1=3t②
①-②,得 3tan+1-(2t+3)an=0,
整理得
| an+1 |
| an |
| 2t+3 |
| 3t |
综上所述,知
| an+1 |
| an |
| 2t+3 |
| 3t |
因此{an}是等比数列. …(5分)
(Ⅱ) 由(Ⅰ) 知f(t)=
| 2t+3 |
| 3t |
| 1 |
| bn-1 |
2•
| ||
3•
|
| 2 |
| 3 |
所以bn-bn-1=
| 2 |
| 3 |
因此,{bn}是等差数列,并且bn=b1+(n-1)d=
| 2 |
| 3 |
| 1 |
| 3 |
所以,Tn=c1+c2+c3+…+cn
=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
=-2d(b2+b4+…+b2n)=-
| 4 |
| 3 |
| n(b2+b2n) |
| 2 |
| 4 |
| 3 |
n(
| ||||
| 2 |
=-
| 8 |
| 9 |
| 4 |
| 3 |
(Ⅲ) 由(Ⅱ)知dn=(1+
| 1 |
| 2n |
则dn+1=[1+
| 1 |
| 2(n+1) |
将dn=(1+
| 1 |
| 2n |
共有n+1项,其第k+1项(0≤k≤n)为Tk+1=
| C | k n |
| 1 |
| 2n |
| 1 |
| 2k |
| 1 |
| k! |
| n(n-1)…(n-k+1) |
| nk |
=
| 1 |
| 2k |
| 1 |
| k! |
| 1 |
| n |
| 2 |
| n |
| k-1 |
| n |
同理,dn+1=[1+
| 1 |
| 2(n+1) |
共有n+2项,第n+2项为Un+2=
| C | n+1 n+1 |
| 1 |
| 2(n+1) |
其前n+1项中的第k+1项(0≤k≤n)为Uk+1=
| 1 |
| 2k |
| 1 |
| k! |
| 1 |
| n+1 |
| 2 |
| n+1 |
| k-1 |
| n+1 |
由1-
| 1 |
| n |
| 1 |
| n+1 |
| 2 |
| n |
| 2 |
| n+1 |
| k |
| n |
| k |
| n+1 |
得Tk+1<Uk+1,k=2,3,…,n,
又T1=U1,T2=U2,Un+2>0,
∴dn<dn+1. …(13分)
点评:本题考查等比数列的证明、前n项和的求法和不等式的证明,结合含两个变量的不等式的处理问题,计算量大,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关题目