题目内容
已知数列{an}满足a1=
,an+1=3an-4n+2(n∈N*)
(1)求a2•a3的值;
(2)证明数列{an-2n}是等比数列,并求出数列{an}的通项公式;
(3)若数列{bn}满足
=
(n∈N*),求数列{bn}的前n项和Sn.
| 7 |
| 3 |
(1)求a2•a3的值;
(2)证明数列{an-2n}是等比数列,并求出数列{an}的通项公式;
(3)若数列{bn}满足
| 1+2bn |
| bn |
| an |
| n |
(1)∵a2=3a1-4+2=3×
-2=5,a3=3a2-4×2+2=3×5-6=9.
∴a2a3=5×9=45.
(2)∵an+1=3an-4n+2(n∈N*),∴an+1-2(n+1)=3(an-2n),
又a1-2=
,∴数列{an-2n}是首项为
,且公比为3的等比数列.
∴an-2n=
×3n-1,于是数列{an}的通项公式为an=2n+3n-2(n∈N*).
(3)由
=
,∴
+2=2+
,得bn=
.
∴Sn=3+
+
+
+…+
①
于是
Sn=1+
+
+…+
+
②
由①-②得
Sn=3+1+
+
+…+
-
=
-
=
[1-(
)n]-
,
∴Sn=
[1-(
)n]-
.
| 7 |
| 3 |
∴a2a3=5×9=45.
(2)∵an+1=3an-4n+2(n∈N*),∴an+1-2(n+1)=3(an-2n),
又a1-2=
| 1 |
| 3 |
| 1 |
| 3 |
∴an-2n=
| 1 |
| 3 |
(3)由
| 1+2bn |
| bn |
| an |
| n |
| 1 |
| bn |
| 3n-2 |
| n |
| n |
| 3n-2 |
∴Sn=3+
| 2 |
| 1 |
| 3 |
| 3 |
| 4 |
| 32 |
| n |
| 3n-2 |
于是
| 1 |
| 3 |
| 2 |
| 3 |
| 3 |
| 32 |
| n-1 |
| 3n-2 |
| n |
| 3n-1 |
由①-②得
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n-2 |
| n |
| 3n-1 |
3[1-(
| ||
1-
|
| n |
| 3n-1 |
| 9 |
| 2 |
| 1 |
| 3 |
| n |
| 3n-1 |
∴Sn=
| 27 |
| 4 |
| 1 |
| 3 |
| n |
| 2×3n-2 |
练习册系列答案
相关题目