题目内容
【题目】已知
为抛物线
:
的焦点,过
的动直线交抛物线
于
,
两点.当直线与
轴垂直时,
.
(1)求抛物线
的方程;
(2)设直线
的斜率为1且与抛物线的准线
相交于点
,抛物线
上存在点
使得直线
,
,
的斜率成等差数列,求点
的坐标.
【答案】(1)
(2) ![]()
【解析】
(1)由题意可得
,即可求出抛物线的方程,(2)设直线
的方程为
,联立
消去
,得
,根据韦达定理结合直线
,
,
的斜率成等差数列,即可求出点
的坐标.
解:(1)因为
,在抛物线方程
中,令
,可得
.
于是当直线与
轴垂直时,
,解得
.
所以抛物线的方程为
.
(2)因为抛物线
的准线方程为
,所以
.
设直线
的方程为
,
联立
消去
,得
.
设
,
,则
,
.
若点
满足条件,则
,
即
,
因为点
,
,
均在抛物线上,所以
,
,
.
代入化简可得
,
将
,
代入,解得
.
将
代入抛物线方程,可得
.
于是点
为满足题意的点.
【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数
(单位:人)与时间
(单位:年)的数据,列表如下:
| 1 | 2 | 3 | 4 | 5 |
| 24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,是否可用线性回归模型拟合
与
的关系,请计算相关系数
并加以说明(计算结果精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式
,参考数据
.
(2)建立
关于
的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).
(参考公式:
,
)
【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
经常网购 | 偶尔或不用网购 | 合计 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合计 |
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为
,求随机变量
的数学期望和方差.
参考公式:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |