题目内容
已知数列{an}为等差数列,且a1=2,a1+a2+a3=12
(1)数列{an}的通项公式an
(2)令bn=3an,求证:数列{bn}是等比数列
(3)令cn=
,求数列{cn}的前n项和Sn.
(1)数列{an}的通项公式an
(2)令bn=3an,求证:数列{bn}是等比数列
(3)令cn=
| 1 | anan+1 |
分析:(1)依题意,可求得a2=4,继而可得公差d,于是可求数列{an}的通项公式;
(2)易求bn=9n,可证得
=9,从而可证数列{bn}是等比数列;
(3)利用裂项法可知,cn=
=
=
(
-
),于是可求数列{cn}的前n项和Sn.
(2)易求bn=9n,可证得
| bn+1 |
| bn |
(3)利用裂项法可知,cn=
| 1 |
| anan+1 |
| 1 |
| 2n(2n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)∵数列{an}为等差数列,且a1=2,a1+a2+a3=12,
∴3a2=12,
∴a2=4,
∴数列{an}的公差d=a2-a1=2,
∴an=2+(n-1)×2=2n;
(2)∵an=2n,
∴bn=3an=32n=9n,
∴
=
=9,
∴数列{bn}是等比数列;
(3)∵cn=
=
=
(
-
),
∴Sn=c1+c2+…+cn
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
∴3a2=12,
∴a2=4,
∴数列{an}的公差d=a2-a1=2,
∴an=2+(n-1)×2=2n;
(2)∵an=2n,
∴bn=3an=32n=9n,
∴
| bn+1 |
| bn |
| 9n+1 |
| 9n |
∴数列{bn}是等比数列;
(3)∵cn=
| 1 |
| anan+1 |
| 1 |
| 2n(2n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=c1+c2+…+cn
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 4 |
| 1 |
| n+1 |
=
| n |
| 4(n+1) |
点评:本题考查数列的求和,着重考查等差数列的通项公式与等比关系的确定,突出裂项法求和的考查,属于中档题.
练习册系列答案
相关题目
定义:在数列{an}中,an>0且an≠1,若
为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2009=( )
| a | an+1 n |
| A、6026 | B、6024 |
| C、2 | D、4 |