题目内容

14.设函数f(x)=log${\;}_{\frac{1}{2}}$(x2+1)+$\frac{8}{3{x}^{2}+1}$,则不等式f(log2x)+f(log${\;}_{\frac{1}{2}}$x)≥2的解集为(  )
A.(0,2]B.[$\frac{1}{2}$,2]C.[2,+∞)D.(0,$\frac{1}{2}$]∪[2,+∞)

分析 ∵f(-x)=$lo{g}_{\frac{1}{2}}$(x2+1)+$\frac{8}{3{x}^{2}+1}$=f(x),∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,再通过换元法解题.

解答 解:∵f(-x)=$lo{g}_{\frac{1}{2}}$(x2+1)+$\frac{8}{3{x}^{2}+1}$=f(x),
∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,
令t=log2x,所以,$lo{g}_{\frac{1}{2}}x$=-t,
则不等式f(log2x)+f($lo{g}_{\frac{1}{2}}x$)≥2可化为:f(t)+f(-t)≥2,
即2f(t)≥2,所以,f(t)≥1,
又∵f(1)=$lo{g}_{\frac{1}{2}}$2+$\frac{8}{3+1}$=1,
且f(x)在[0,+∞)上单调递减,在R上为偶函数,
∴-1≤t≤1,即log2x∈[-1,1],
解得,x∈[$\frac{1}{2}$,2],
故选:B.

点评 本题主要考查了对数型复合函数的性质,涉及奇偶性和单调性的判断及应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网