题目内容

在△ABC中,若sin(π-A)•sinB<sin(数学公式+A)•cosB,则此三角形是


  1. A.
    锐角三角形
  2. B.
    直角三角形
  3. C.
    钝角三角形
  4. D.
    任意三角形
C
分析:利用诱导公式化简已知不等式的左右两边中的sin(π-A)及sin(+A),移项后再利用两角和与差的余弦函数公式化简,得到cos(A+B)的值大于0,可得A+B为锐角,由三角形的内角和定理得出C为钝角,进而确定出三角形为钝角三角形.
解答:∵sin(π-A)=sinA,sin(+A)=cosA,
∴sin(π-A)•sinB<sin(+A)•cosB变为:sinAsinB<cosAcosB,
即cosAcosB-sinAsinB=cos(A+B)>0,
∴0<A+B<,又A+B+C=π,
<C<π,即C为钝角,
则此三角形是钝角三角形.
故选C
点评:此题考查了三角形形状的判断,涉及的知识有:诱导公式,两角和与差的余弦函数公式,以及余弦函数的图象与性质,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网