题目内容
已知各项为正数的等比数列{an}(n∈N*)的公比为q(q≠1),有如下真命题:若
=p,则(an1•an2)
=ap(其中n1、n2、p为正整数).
(1)若
=p+
,试探究(an1•an2)
与ap、q之间有何等量关系,并给予证明;
(2)对(1)中探究得出的结论进行推广,写出一个真命题,并给予证明.
| n1+n2 |
| 2 |
| 1 |
| 2 |
(1)若
| n1+n2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)对(1)中探究得出的结论进行推广,写出一个真命题,并给予证明.
(1)因为
=p+
,所以n1+n2=2p+1,又an=a1qn-1(an1•an2)
=(
•qn1+n2-2)
=(
•q(2p-2)+1)
=(
•qp-1)q
=apq
即(an1•an2)
=apq
(2)若an1,an2,,anm是公比为q的等比数列{an}的任意m项,则存在以下真命题:
①若
=p+
(m、p∈N*,r∈N,0≤r<m),则有(an1•an2••an3)
=apq
成立.
②若
=p+
(m、p∈N*,s、t互素),则有(an1•an2••an3)
=apq
成立.
| n1+n2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| a | 21 |
| 1 |
| 2 |
| a | 21 |
| 1 |
| 2 |
| a | 1 |
| 1 |
| 2 |
| 1 |
| 2 |
即(an1•an2)
| 1 |
| 2 |
| 1 |
| 2 |
(2)若an1,an2,,anm是公比为q的等比数列{an}的任意m项,则存在以下真命题:
①若
| n1+n2++nm |
| m |
| r |
| m |
| 1 |
| m |
| r |
| m |
②若
| n1+n2++nm |
| m |
| t |
| s |
| 1 |
| m |
| t |
| s |
练习册系列答案
相关题目