题目内容

19.随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了了解公众对“延迟退休”的态度,某校课外研究性学习小组对某社区随机抽取了5人进行调查,将调查情况进行整理后制成下表:
年龄[20,25)[25,30)[30,35)[35,40)[40,45)
人数45853
年龄[45,50)[50,55)[55,60)[60,65)[65,70)
人数67354
年龄在[25,30),[55,60)的被调查者中赞成人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.
(Ⅰ)求年龄在[25,30)的被调查者中选取的2人都是赞成的概率;
(Ⅱ)求选中的4人中,至少有3人赞成的概率;
(Ⅲ)若选中的4人中,不赞成的人数为X,求随机变量X的分布列和数学期望.

分析 (Ⅰ)利用古典概型的概率公式,求出年龄在[25,30)的被调查者中选取的2人都是赞成的概率;
(Ⅱ)利用古典概型的概率公式,互斥事件的概率公式,求选中的4人中,至少有3人赞成的概率;
(Ⅲ)由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.

解答 解:(Ⅰ) 设“年龄在[25,30)的被调查者中选取的2人都是赞成”为事件A,
所以$P(A)=\frac{C_3^2}{C_5^2}=\frac{3}{10}$.…(3分)
(Ⅱ) 设“选中的4人中,至少有3人赞成”为事件B,
所以$P(B)=\frac{C_3^2C_2^1C_1^1}{C_5^2C_3^2}+\frac{C_3^1C_2^1C_2^2}{C_5^2C_3^2}+\frac{C_3^2C_2^2}{C_5^2C_3^2}=\frac{1}{2}$.…(7分)
(Ⅲ)X的可能取值为0,1,2,3.
所以$P(X=0)=\frac{C_3^2C_2^2}{C_5^2C_3^2}=\frac{1}{10}$,$P(X=1)=\frac{C_3^1C_2^1C_2^2+C_3^2C_2^1C_1^1}{C_5^2C_3^2}=\frac{2}{5}$,
$P(X=2)=\frac{C_2^2C_2^2+C_3^1C_2^1C_2^1C_1^1}{C_5^2C_3^2}=\frac{13}{30}$,$P(X=3)=\frac{C_2^2C_2^1C_1^1}{C_5^2C_3^2}=\frac{1}{15}$.…(11分)
所以X的分布列是

X0123
P$\frac{1}{10}$$\frac{2}{5}$$\frac{13}{30}$$\frac{1}{15}$
…(12分)
所以EX=0×$\frac{1}{10}$+1×$\frac{2}{5}$+2×$\frac{13}{30}$$+3×\frac{1}{15}$=$\frac{22}{15}$.…(13分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网