题目内容

数列{an}的通项公式an=ncos
2
,其前n项和为Sn,则S2013=
1006
1006
分析:算出a4n+1+a4n+2+a4n+3+a4n+4=2,于是S2013=
2012
4
×2+a2013
即可得出.
解答:解:∵a4n+1=(4n+1)cos
(4n+1)π
2
=(4n+1)cos
π
2
=0,a4n+2=(4n+2)cos
(4n+2)π
2
=-(4n+2),
a4n+3=(4n+3)cos
(4n+3)π
2
=0,a4n+4=(4n+4)cos
(4n+4)π
2
=4n+4.
∴a4n+1+a4n+2+a4n+3+a4n+4=2,
于是S2013=
2012
4
×2+a2013
=1006.
故答案为1006.
点评:正确找出其周期性是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网