题目内容
数列{an}的通项公式an=ncos
,其前n项和为Sn,则S2013=
| nπ | 2 |
1006
1006
.分析:算出a4n+1+a4n+2+a4n+3+a4n+4=2,于是S2013=
×2+a2013即可得出.
| 2012 |
| 4 |
解答:解:∵a4n+1=(4n+1)cos
=(4n+1)cos
=0,a4n+2=(4n+2)cos
=-(4n+2),
a4n+3=(4n+3)cos
=0,a4n+4=(4n+4)cos
=4n+4.
∴a4n+1+a4n+2+a4n+3+a4n+4=2,
于是S2013=
×2+a2013=1006.
故答案为1006.
| (4n+1)π |
| 2 |
| π |
| 2 |
| (4n+2)π |
| 2 |
a4n+3=(4n+3)cos
| (4n+3)π |
| 2 |
| (4n+4)π |
| 2 |
∴a4n+1+a4n+2+a4n+3+a4n+4=2,
于是S2013=
| 2012 |
| 4 |
故答案为1006.
点评:正确找出其周期性是解题的关键.
练习册系列答案
相关题目