题目内容
已知函数f(x)=(cos(2x-
)+
)2+cos2(2x+
+nπ)-
(n∈Z)
(1)求函数f(x)的最小正周期T;
(2)当x∈[
,
]时,求函数f(x)的最大值和最小值.
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| 3 |
| 2 |
(1)求函数f(x)的最小正周期T;
(2)当x∈[
| π |
| 4 |
| 3π |
| 4 |
(1)∵f(x)=[cos2(2x-
)+
cos(2x-
)+
]+
-
=
+
cos(2x-
)+
]+
-
=
sin4x+
cos(2x-
)-
sin4x
=
cos(2x-
).
∴f(x)的最小正周期T=
=π;
(2)∵
≤x≤
,
∴
≤2x-
≤
,
∴-1≤cos(2x-
)≤
.
∴-
≤f(x)=
cos(2x-
)≤1.
∴f(x)max=1,f(x)min=-
.
| π |
| 4 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
1+cos[4x+
| ||
| 2 |
| 3 |
| 2 |
=
1+cos(4x-
| ||
| 2 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
1+cos[4x+
| ||
| 2 |
| 3 |
| 2 |
=
| 1 |
| 2 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
=
| 2 |
| π |
| 4 |
∴f(x)的最小正周期T=
| 2π |
| 2 |
(2)∵
| π |
| 4 |
| 3π |
| 4 |
∴
| π |
| 4 |
| π |
| 4 |
| 5π |
| 4 |
∴-1≤cos(2x-
| π |
| 4 |
| ||
| 2 |
∴-
| 2 |
| 2 |
| π |
| 4 |
∴f(x)max=1,f(x)min=-
| 2 |
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|