题目内容

(1)已知f(x)=
11+x
,(x∈R,且x≠-1),g(x)=x2+2x,(x∈R),求f(3),f[g(3)]的值.
(2)已知f(2x+1)=x2-2x,求f(x)的解析式.
分析:(1)由f(x)=
1
1+x
,g(x)=x2+2x可得f(3)=
1
4
,g(3)=15,则f[g(3)]=f(15)代入可求
(2)令2x+1=t则x=
t-1
2
,利用代入可求f(t),进而可求f(x)
解答:解:(1)∵f(x)=
1
1+x
,g(x)=x2+2x
∴f(3)=
1
4
,g(3)=15
∴f[g(3)]=f(15)=
1
16

(2)令2x+1=t则x=
t-1
2

∴f(t)=(
t-1
2
2-2(
t-1
2
)=
1
4
t2-
3
2
t+
5
4

∴f(x)=
1
4
x2-
3
2
x+
5
4
点评:本题主要考查了利用代入法求解函数值,及换元法求解函数的解析式,属于基础试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网