题目内容
| lim |
| x→2 |
| 3x2-5x |
| 2x-4 |
| 1 |
| x-2 |
| A、-∞ | ||
| B、1 | ||
C、
| ||
D、
|
分析:本题是一个求极限的题,且所给的分式在极限点处没有意义,此类极限的求法要对被求极限的分工进行变形,使分式变为整式,再求极限
解答:解:∵
-
=
=
(3x+1)
∴
(
-
)=
(3x+1)=
故选C
| 3x2-5x |
| 2x-4 |
| 1 |
| x-2 |
| (3x +1)(x-2) |
| 2x-4 |
| 1 |
| 2 |
∴
| lim |
| x→2 |
| 3x2-5x |
| 2x-4 |
| 1 |
| x-2 |
| lim |
| x→2 |
| 1 |
| 2 |
| 7 |
| 2 |
故选C
点评:本题考查极限及其运算,解答本题,关键是掌握住此类分工型极限的求法,即转化为整式型极限,这是这一类极限问题转化的通用思路.
练习册系列答案
相关题目