ÌâÄ¿ÄÚÈÝ
12£®¹ØÓÚº¯Êýf£¨x£©=2£¨sinx-cos x£©cos xµÄËĸö½áÂÛ£º¢Ù×î´óֵΪ$\sqrt{2}$£»
¢Ú°Ñº¯Êýf£¨x£©=$\sqrt{2}$sin2x-1µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»ºó¿ÉµÃµ½º¯Êýf£¨x£©=2£¨sinx-cosx£©cos xµÄͼÏó£»
¢Ûµ¥µ÷µÝÔöÇø¼äΪ[k¦Ð+$\frac{7¦Ð}{8}$£¬k¦Ð+$\frac{11¦Ð}{8}$]£¨k¡ÊZ£©£»
¢ÜͼÏóµÄ¶Ô³ÆÖÐÐÄΪ£¨$\frac{k}{2}$¦Ð+$\frac{¦Ð}{8}$£¬-1£©£¨k¡ÊZ£©£®
ÆäÖÐÕýÈ·µÄ½áÂÛÓТۢܣ®£¨½«ÄãÈÏΪÕýÈ·½áÂÛµÄÐòºÅ¶¼ÌîÉÏ£©£®
·ÖÎö »¯¼òº¯ÊýµÄ½âÎöʽ£¬Çó³öº¯ÊýµÄ×îÖµÅжϢٵÄÕýÎó£»ÀûÓÃÈý½Çº¯ÊýµÄͼÏóµÄÆ½ÒÆÅжϢڵÄÕýÎó£»Çó³öº¯ÊýµÄµ¥µ÷ÔöÇø¼äÅжϢ۵ÄÕýÎó£»Çó³öº¯ÊýµÄ¶Ô³ÆÖÐÐÄÅжϢܵÄÕýÎó£®
½â´ð ½â£º¶ÔÓÚ¢Ù£¬ÒòΪf£¨x£©=2sinxcosx-2cos2x=$\sqrt{2}$sin£¨2x-$\frac{¦Ð}{4}$£©-1£¬ËùÒÔ×î´óֵΪ$\sqrt{2}$-1£¬¹Ê¢Ù´íÎó£®
¶ÔÓÚ¢Ú£¬½«f£¨x£©=$\sqrt{2}$sin2x-1µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»ºóµÃµ½f£¨x£©=$\sqrt{2}$sin£¨2x-$\frac{¦Ð}{2}$£©-1µÄͼÏ󣬶øº¯Êýf£¨x£©=2£¨sinx-cosx£©cosx=sin2x-cos2x-1=$\sqrt{2}$sin£¨2x-$\frac{¦Ð}{4}$£©-1£®
¹Ê¢Ú´íÎó£®
¶ÔÓÚ¢Û£¬ÓÉ-$\frac{¦Ð}{2}$+2k¦Ð¡Ü2x-$\frac{¦Ð}{4}$¡Ü$\frac{¦Ð}{2}$+2k¦Ð£¬µÃ-$\frac{¦Ð}{8}$+k¦Ð¡Üx¡Ü$\frac{3¦Ð}{8}$+k¦Ð£¬k¡ÊZ£¬¼´ÔöÇø¼äΪ[k¦Ð+$\frac{7¦Ð}{8}$£¬k¦Ð+$\frac{11¦Ð}{8}$£¨k¡ÊZ£©£¬¹Ê¢ÛÕýÈ·£®
¶ÔÓڢܣ¬ÓÉ2x-$\frac{¦Ð}{4}$=k¦Ð£¬k¡ÊZ£¬µÃx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{8}$£¬k¡ÊZ£¬ËùÒÔº¯ÊýµÄ¶Ô³ÆÖÐÐÄΪ£¨$\frac{k}{2}$¦Ð+$\frac{¦Ð}{8}$£¬-1£©£¨k¡ÊZ£©£®¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Û¢Ü£®
µãÆÀ ±¾Ì⿼²éÈý½Çº¯ÊýµÄ»¯¼òÇóÖµ£¬º¯ÊýµÄµ¥µ÷ÐÔÒÔ¼°º¯ÊýµÄͼÏóµÄÆ½ÒÆ£¬Èý½Çº¯ÊýµÄ¶Ô³ÆÖÐÐÄ£¬ÊÇÖеµÌ⣮
| A£® | $¦Ø=1£¬¦È=\frac{¦Ð}{3}$ | B£® | $¦Ø=1£¬¦È=-\frac{¦Ð}{3}$ | C£® | $¦Ø=\frac{1}{2}£¬¦È=\frac{¦Ð}{6}$ | D£® | $¦Ø=\frac{1}{2}£¬¦È=-\frac{¦Ð}{6}$ |
| A£® | a¡Ü2 | B£® | a¡Ü3 | C£® | a£¾3 | D£® | a¡Ý3 |