题目内容

已知椭圆C:和直线L:="1," 椭圆的离心率,坐标原点到直线L的距离为
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆C相交于M、N两点,试判断是否存在值,使以MN为直径的圆过定点E?若存在求出这个值,若不存在说明理由。

(1);(2)

解析试题分析:1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.
试题解析:解:(1)直线L:
由题意得:  又有
解得:。 
(2)若存在,则,设,则:

联立得:(*)


代入(*)式,得:

满足
考点:(1)求椭圆的标准方程;(2)直线与椭圆相交的综合问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网