题目内容
设函数f(x)=x3+mln(x+1)
(1)曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求实数m的值;
(2)求证:
+
+
+…+
<ln(n+1),(n∈N*);
(3)求证:
(sin
+
)<n(1-cos1+ln2).
(1)曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求实数m的值;
(2)求证:
| 1 |
| 23 |
| 2 |
| 33 |
| 3 |
| 43 |
| n-1 |
| n3 |
(3)求证:
| n |
| i=1 |
| i-1 |
| n |
| n |
| i+n |
分析:(1)利用导数的几何意义即可求出;
(2)构造函数,利用导数得出其单调性即可证明;
(3)利用y=sinx在[0,1]上单调递增、y=
在[0,1]上单调递减及定积分的意义即可得出.
(2)构造函数,利用导数得出其单调性即可证明;
(3)利用y=sinx在[0,1]上单调递增、y=
| 1 |
| 1+x |
解答:解:(1)由f(x)=x3+mln(x+1),得f′(x)=3x2+
,x∈(-1,+∞)
由于曲线y=f(x)在点(1,f(1))处的切线与x轴平行,
∴f′(1)=0,解得m=-6.
(2)∵
+
+
+…+
<ln(n+1),(n∈N*)
等价于(
-
)+(
-
)+…+(
-
)<ln(
•
•…•
)
等价于(
-
)+(
-
)+…+(
-
)<ln(1+
)+ln(1+
)+…+ln(1+
)
令m=1,f(x)=x3+ln(x+1)
设h(x)=x2-f(x)=x2-ln(1+x)-x3
则h'(x)=-3x2+2x-
=-
当x∈(0,+∞)时,h'(x)<0,∴h(x)在(0,+∞)上单调递减,
又∵h(0)=0,
∴当x∈(0,+∞)时,恒有h(x)<h(0)=0,即x2-ln(x+1)<x3恒成立.
∵k∈N*,∴
∈(0,+∞)取x=
,则有
-
<ln(1+
),
∴
(
-
)<
ln(1+
),
即
+
+
+…+
<ln(n+1),(n∈N*).
(3)∵y=sinx在[0,1]上单调递增,
∴
sin
=n[
(sin
+sin
+…sin
)]<n
sinxdx=n(-cosx)
=n(1-cos1).
又y=
在[0,1]上单调递减,
∴
=
+
+…+
=n[
(
+
+…+
)]<n
dx=nln(1+x)
=nln2.
∴
(sin
+
)<n(1-cos1+ln2).
| m |
| x+1 |
由于曲线y=f(x)在点(1,f(1))处的切线与x轴平行,
∴f′(1)=0,解得m=-6.
(2)∵
| 1 |
| 23 |
| 2 |
| 33 |
| 3 |
| 43 |
| n-1 |
| n3 |
等价于(
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| n2 |
| 1 |
| n3 |
| n+1 |
| n |
| n |
| n-1 |
| 2 |
| 1 |
等价于(
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| n2 |
| 1 |
| n3 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| n |
令m=1,f(x)=x3+ln(x+1)
设h(x)=x2-f(x)=x2-ln(1+x)-x3
则h'(x)=-3x2+2x-
| 1 |
| x+1 |
| 3x3+(x-1)2 |
| x+1 |
当x∈(0,+∞)时,h'(x)<0,∴h(x)在(0,+∞)上单调递减,
又∵h(0)=0,
∴当x∈(0,+∞)时,恒有h(x)<h(0)=0,即x2-ln(x+1)<x3恒成立.
∵k∈N*,∴
| 1 |
| k |
| 1 |
| k |
| 1 |
| k2 |
| 1 |
| k3 |
| 1 |
| k |
∴
| n |
| k=1 |
| 1 |
| k2 |
| 1 |
| k3 |
| n |
| k=1 |
| 1 |
| k |
即
| 1 |
| 23 |
| 2 |
| 33 |
| 3 |
| 43 |
| n-1 |
| n3 |
(3)∵y=sinx在[0,1]上单调递增,
∴
| n |
| i=1 |
| i-1 |
| n |
| 1 |
| n |
| 0 |
| n |
| 1 |
| n |
| n-1 |
| n |
| ∫ | 1 0 |
| | | 1 0 |
又y=
| 1 |
| 1+x |
∴
| n |
| i=1 |
| n |
| i+n |
| 1 | ||
1+
|
| 1 | ||
1+
|
| 1 | ||
1+
|
| 1 |
| n |
| 1 | ||
1+
|
| 1 | ||
1+
|
| 1 | ||
1+
|
| ∫ | 1 0 |
| 1 |
| 1+x |
| | | 1 0 |
∴
| n |
| i=1 |
| i-1 |
| n |
| n |
| i+n |
点评:熟练掌握导数的几何意义、通过构造函数利用导数得出其单调性证明不等式、利用y=sinx在[0,1]上单调递增、y=
在[0,1]上单调递减及定积分的意义是解题的关键.
| 1 |
| 1+x |
练习册系列答案
相关题目