题目内容
已知函数f1(x)=| 1 |
| 1+2x |
fn(0)-
| ||
| fn(0)+1 |
(I)求数列{an}的通项公式;
(II)若数列{(n+1)an}的前n项和为Sn,求证:Sn<
| 3 |
| 2 |
分析:(I)通过已知条件,求出an与an+1的关系并判断其数列{an}是等比数列,从而求出通项公式;
(II)由(I)可知用n的代数式表示sn,然后利用错位相减法,化简求得sn,从而判断sn<
,即得证.
(II)由(I)可知用n的代数式表示sn,然后利用错位相减法,化简求得sn,从而判断sn<
| 3 |
| 2 |
解答:解:(I)由已知fn+1(x)=
所以,fn+1(x)-
=
-
=-
fn+1(x)+1=
+1=
所以,|
|=
|
|?|
|=
|
|
即an+1=
an,其中a1=|
|=
所以,数列{an}是以
为首项,
为公比的等比数列,故an=
×(
)n-1=
(II)Sn=
+
+
+…+
所以,2Sn=
+
+
+…+
,两式相减
得Sn=
+
+
+…+
-
=
-
<
得证.
| 1 |
| 1+2fn(x) |
所以,fn+1(x)-
| 1 |
| 2 |
| 1 |
| 1+2fn(x) |
| 1 |
| 2 |
fn(x)-
| ||
| 1+2fn(x) |
fn+1(x)+1=
| 1 |
| 2fn(x) |
| 2[fn(1)+1] |
| 1+2fn(x) |
所以,|
fn+1(x)-
| ||
| fn+1(x)+1 |
| 1 |
| 2 |
fn(x)-
| ||
| fn(x)+1 |
fn+1(0)-
| ||
| fn+1(0)+1 |
| 1 |
| 2 |
fn(0)-
| ||
| fn(0)+1 |
即an+1=
| 1 |
| 2 |
f1(0)-
| ||
| f1(0)+1 |
| 1 |
| 4 |
所以,数列{an}是以
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
(II)Sn=
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n+1 |
| 2n+1 |
所以,2Sn=
| 2 |
| 2 |
| 3 |
| 22 |
| 4 |
| 23 |
| n+1 |
| 2n |
得Sn=
| 2 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n+1 |
| 2n+1 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
| 3 |
| 2 |
点评:此题考查利用定义法判断一个数列是等比数列,及求和中常用的错位相减法.
练习册系列答案
相关题目