ÌâÄ¿ÄÚÈÝ
¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýy=f£¨x£©£¬ÈôͬʱÂú×ãÏÂÁÐÌõ¼þ£º¢Ùf£¨x£©ÔÚDÄÚµ¥µ÷µÝÔö»òµ¥µ÷µÝ¼õ£»
¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòΪ[a£¬b]£»ÄÇô°Ñy=f£¨x£©£¨x¡ÊD£©½Ð±Õº¯Êý£®
£¨1£©Çó±Õº¯Êýy=-x3·ûºÏÌõ¼þ¢ÚµÄÇø¼ä[a£¬b]£»
£¨2£©ÅжϺ¯Êýf(x)=
| 3 |
| 4 |
| 1 |
| x |
£¨3£©Èôy=k+
| x+2 |
·ÖÎö£º£¨1£©¸ù¾Ýµ¥µ÷ÐÔÒÀ¾Ý±ÕÇø¼äµÄ¶¨ÒåµÈ¼Ûת»¯Îª·½³Ì£¬Ö±½ÓÇó½â£®
£¨2£©ÅÐ¶ÏÆäÔÚ£¨0£¬+¡Þ£©ÊÇ·ñÓе¥µ÷ÐÔ£¬Ôپݱպ¯ÊýµÄ¶¨ÒåÅжϣ»
£¨3£©¸ù¾Ý±Õº¯ÊýµÄ¶¨ÒåÒ»¶¨´æÔÚÇø¼ä[a£¬b]£¬Óɶ¨ÒåÖ±½Óת»¯Çó½â¼´¿É£®
£¨2£©ÅÐ¶ÏÆäÔÚ£¨0£¬+¡Þ£©ÊÇ·ñÓе¥µ÷ÐÔ£¬Ôپݱպ¯ÊýµÄ¶¨ÒåÅжϣ»
£¨3£©¸ù¾Ý±Õº¯ÊýµÄ¶¨ÒåÒ»¶¨´æÔÚÇø¼ä[a£¬b]£¬Óɶ¨ÒåÖ±½Óת»¯Çó½â¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬y=-x3ÔÚ[a£¬b]Éϵݼõ£¬
Ôò
½âµÃ
£¨4·Ö£©
ËùÒÔ£¬ËùÇóµÄÇø¼äΪ[-1£¬1]£»£¨5·Ö£©
£¨2£©È¡x1=1£¬x2=10£¬Ôòf(x1)=
£¼
=f(x2)£¬
¼´f£¨x£©²»ÊÇ£¨0£¬+¡Þ£©Éϵļõº¯Êý£®
ȡx1=
£¬x2=
£¬
f(x1)=
+10£¼
+100=f(x2)£¬
¼´f£¨x£©²»ÊÇ£¨0£¬+¡Þ£©ÉϵÄÔöº¯Êý
ËùÒÔ£¬º¯ÊýÔÚ¶¨ÒåÓòÄÚ²»µ¥µ÷µÝÔö»òµ¥µ÷µÝ¼õ£¬
´Ó¶ø¸Ãº¯Êý²»ÊDZպ¯Êý£»£¨9·Ö£©
£¨3£©Èôy=k+
ÊDZպ¯Êý£¬Ôò´æÔÚÇø¼ä[a£¬b]£¬
ÔÚÇø¼ä[a£¬b]ÉÏ£¬º¯Êýf£¨x£©µÄÖµÓòΪ[a£¬b]£¬
¼´
£¬¡àa£¬bΪ·½³Ìx=k+
µÄÁ½¸öʵÊý¸ù£¬
¼´·½³Ìx2-£¨2k+1£©x+k2-2=0£¨x¡Ý-2£¬x¡Ýk£©ÓÐÁ½¸ö²»µÈµÄʵ¸ù£¨11·Ö£©
µ±k¡Ü-2ʱ£¬ÓÐ
£¬½âµÃ-
£¼k¡Ü-2£¬£¨13·Ö£©
µ±k£¾-2ʱ£¬ÓÐ
£¬Î޽⣬£¨15·Ö£©
×ÛÉÏËùÊö£¬k¡Ê(-
£¬-2]£®
Ôò
|
|
ËùÒÔ£¬ËùÇóµÄÇø¼äΪ[-1£¬1]£»£¨5·Ö£©
£¨2£©È¡x1=1£¬x2=10£¬Ôòf(x1)=
| 7 |
| 4 |
| 76 |
| 10 |
¼´f£¨x£©²»ÊÇ£¨0£¬+¡Þ£©Éϵļõº¯Êý£®
ȡx1=
| 1 |
| 10 |
| 1 |
| 100 |
f(x1)=
| 3 |
| 40 |
| 3 |
| 400 |
¼´f£¨x£©²»ÊÇ£¨0£¬+¡Þ£©ÉϵÄÔöº¯Êý
ËùÒÔ£¬º¯ÊýÔÚ¶¨ÒåÓòÄÚ²»µ¥µ÷µÝÔö»òµ¥µ÷µÝ¼õ£¬
´Ó¶ø¸Ãº¯Êý²»ÊDZպ¯Êý£»£¨9·Ö£©
£¨3£©Èôy=k+
| x+2 |
ÔÚÇø¼ä[a£¬b]ÉÏ£¬º¯Êýf£¨x£©µÄÖµÓòΪ[a£¬b]£¬
¼´
|
| x+2 |
¼´·½³Ìx2-£¨2k+1£©x+k2-2=0£¨x¡Ý-2£¬x¡Ýk£©ÓÐÁ½¸ö²»µÈµÄʵ¸ù£¨11·Ö£©
µ±k¡Ü-2ʱ£¬ÓÐ
|
| 9 |
| 4 |
µ±k£¾-2ʱ£¬ÓÐ
|
×ÛÉÏËùÊö£¬k¡Ê(-
| 9 |
| 4 |
µãÆÀ£º¿¼²éº¯ÊýµÄµ¥µ÷ÐÔ¼°Ð¶¨ÒåÐͺ¯ÊýµÄÀí½â£¬ÒÔ¼°ÎÊÌâµÄµÈ¼Ûת»¯ÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿