题目内容
已知数列{an}为等差数列,若
<-1,且它们的前n项和Sn有最大值,则使得Sn<0的n的最小值为( )
| a11 |
| a10 |
| A.11 | B.19 | C.20 | D.21 |
由
<-1,可得
<0,
由它们的前n项和Sn有最大可得数列的d<0,
∴a10>0,a11+a10<0,a11<0,
∴a1+a19=2a10>0,a1+a20=a11+a10<0,
则使得Sn<0的n的最小值为20.
故选C
| a11 |
| a10 |
| a11+a10 |
| a10 |
由它们的前n项和Sn有最大可得数列的d<0,
∴a10>0,a11+a10<0,a11<0,
∴a1+a19=2a10>0,a1+a20=a11+a10<0,
则使得Sn<0的n的最小值为20.
故选C
练习册系列答案
相关题目
定义:在数列{an}中,an>0且an≠1,若
为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2009=( )
| a | an+1 n |
| A、6026 | B、6024 |
| C、2 | D、4 |