题目内容

函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f(),c=f(3),则( )
A.a<b<c
B.c<a<b
C.c<b<a
D.b<c<a
【答案】分析:根据f(x)=f(2-x)求出(x)的图象关于x=1对称,又当x∈(-∞,1)时,(x-1)f′(x)<0,x-1<0,得到f′(x)>0,此时f(x)为增函数,根据增函数性质得到即可.
解答:解:由f(x)=f(2-x)可知,f(x)的图象关于x=1对称,
根据题意又知x∈(-∞,1)时,f′(x)>0,此时f(x)为增函数,
x∈(1,+∞)时,f′(x)<0,f(x)为减函数,
所以f(3)=f(-1)<f(0)<f(),即c<a<b,
故选B.
点评:考查学生利用函数单调性来解决数学问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网