ÌâÄ¿ÄÚÈÝ

ÒÑÖªÊýÁÐ{an}Âú×ãa1=
7
6
£¬SnÊÇ{an}µÄǰnÏîºÍ£¬µã£¨2Sn+an£¬Sn+1£©ÔÚf£¨x£©=
1
2
x+
1
3
µÄͼÏóÉÏ£¬ÊýÁÐ{bn}ÖУ¬b1=1£¬ÇÒ
bn+1
bn
=
n
n+1
 £¨n¡ÊN*£©£®
£¨1£©Ö¤Ã÷ÊýÁÐ{an-
2
3
}ÊǵȱÈÊýÁУ»
£¨2£©·Ö±ðÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽanºÍbn£»
£¨3£©Èôcn=
an-
2
3
bn
£¬TnΪÊýÁÐ{cn}µÄǰnÏîºÍ£¬n¡ÊN*£¬ÇóTn²¢±È½ÏTnÓë1µÄ´óС£¨Ö»Ðèд³ö½á¹û£¬²»ÒªÇóÖ¤Ã÷£©£®
·ÖÎö£º£¨1£©Óɵ㣨2Sn+an£¬Sn+1£©ÔÚf£¨x£©=
1
2
x+
1
3
µÄͼÏóÉÏ£¬ÖªSn+1-Sn=
1
2
an+
1
3
£¬¹Êan+1=
1
2
an+
1
3
£¬ÓÉ´ËÄܹ»Ö¤Ã÷ÊýÁÐ{an-
2
3
}ÊǵȱÈÊýÁУ®
£¨2£©ÓÉan-
2
3
=(a1-
2
3
)(
1
2
)n-1
£¬µÃan=
2
3
+(
1
2
)
n
£¬ÓÉ
bn+1
bn
=
n
n+1
£¬Öª
b2
b1
=
1
2
£¬
b3
b2
=
2
3
£¬
b4
b3
=
3
4
£®ÓÉ´ËÄÜÇó³öÊýÁÐ{an}ºÍ{bn}µÄͨÏʽanºÍbn£®
£¨3£©cn=
an-
2
3
bn
=
(
1
2
)
n
1
n
=n•(
1
2
)
n
£¬Tn=1¡Á
1
2
+2¡Á(
1
2
)
2
+¡­+n¡Á(
1
2
)
n
£¬ÓÉ´íλÏà¼õ·¨ÇóµÃTn=2-
2+n
2n
£¬ÓÉ´ËÄܹ»±È½Ï±È½ÏTnÓë1µÄ´óС£®
½â´ð£º½â£º£¨1£©¡ßµã£¨2Sn+an£¬Sn+1£©ÔÚf£¨x£©=
1
2
x+
1
3
µÄͼÏóÉÏ
¡àSn+1=
1
2
(2Sn+an)+
1
3
£¬
¼´Sn+1-Sn=
1
2
an+
1
3
£¬
an+1=
1
2
an+
1
3
£¬
¼´an+1-
2
3
=
1
2
(an-
2
3
)
£¬
¡àa1-
2
3
=
1
2
¡Ù0
£¬
¡àÊýÁÐ{an-
2
3
}ÊǵȱÈÊýÁУ®
£¨2£©ÓÉ£¨1£©Öª£¬an-
2
3
=(a1-
2
3
)(
1
2
)n-1
£¬
µÃan=
2
3
+(
1
2
)
n
£¬
¡ß
bn+1
bn
=
n
n+1
£¬
¡à
b2
b1
=
1
2
£¬
b3
b2
=
2
3
£¬
b4
b3
=
3
4
£¬¡­£¬
bn
bn-1
=
n-1
n
£¬
¡à
bn
b1
=
1
2
¡Á
2
3
¡Á
3
4
¡Á¡­¡Á
n-1
n
=
1
n
£¬
¼´bn=
1
n
b1
=
1
n
£¨n¡Ý2£©£®
ÓÖ¡ßb1=1£¬¡àbn=
1
n
£®
£¨3£©cn=
an-
2
3
bn
=
(
1
2
)
n
1
n
=n•(
1
2
)
n
£¬
Tn=1¡Á
1
2
+2¡Á(
1
2
)
2
+¡­+n¡Á(
1
2
)
n
£¬¢Ù
1
2
Tn=1¡Á(
1
2
)
2
+¡­+(
1
2
)
n
-n•(
1
2
)
n+1
£¬¢Ú
¢Ù-¢ÚµÃ£º
1
2
Tn=
1
2
+(
1
2
)
2
+¡­+(
1
2
)
n
-n(
1
2
) n+1
£¬
1
2
Tn=
1
2
(1-
1
2 n
)
1-
1
2
-n(
1
2
)n+1
£¬
1
2
Tn=1-
1
2 n
-n(
1
2
)
n+1
£¬
Tn=2-
2+n
2n
£¬
Tn-1=1-
2+n
2n
£¬
n=1ʱ£¬Tn-1£¼0£¬¼´Tn£¼1£¬
n=2ʱ£¬Tn-1=0£¬¼´Tn=1£¬
n¡Ý3ʱ£¬Tn-1£¾0£¬¼´Tn£¾1£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁеÄÖ¤Ã÷¡¢ÊýÁÐͨÏʽµÄÇ󷨺ÍÊýÁÐǰnÏîºÍµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÊýÁеĵÝÍÆÊ½µÄÁé»îÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø