题目内容

(2006•蚌埠二模)已知函数f(x)=-acos2x-
3
asin2x+2a+b,(a>0)在x∈[0,
π
2
]
时,有f(x)的值域为[-5,1].
(1)求a,b的值;
(2)说明函数y=f(x)的图象可以由y=cos2x的图象经过怎样的变换得到;
(3)若g(t)=at2+bt-3,t∈[-1,0],求g(t)的最小值.
分析:(1)先由两角差的余弦公式化简函数解析式,由x的范围求出“2x-
π
3
”,再由余弦函数的性质求出对应余弦值的范围,再由a的符号和函数的最值列出方程组,求出a和b;
(2)由(1)求出函数的解析式,根据图象平移法则写出平移和变换的过程;
(3)由(1)求出函数的解析式,并进行配方,再由二次函数的单调性,判断出在[-1,0]上的单调性,再由函数的最小值.
解答:解:(1)由题意得,
f(x)=-acos2x-
3
asin2x+2a+b=-2acos(2x-
π
3
)+2a+b

0≤x≤
π
2
得,-
π
3
≤2x-
π
3
3

-
1
2
≤cos(2x-
π
3
)≤1

又∵a>0,
f(x)max=3a+b=1
f(x)min=b=-5
,解得
a=2
b=-5

(2)由(1)知,
f(x)=-4cos(2x-
π
3
)-1=4cos(2x+
3
)
-1,
∴由y=cos2x的图象先向左平移
π
3
个单位,然后横坐标不变、纵坐标变为原来的4倍,
再向下平移1个单位,即可得到函数y=f(x)的图象.
(3)由(1)知,
g(t)=2t2-5t-3=2(t-
5
4
)2-
49
8

∴当t∈[-1,0]时,g(t)单调递减,
∴g(t)min=g(0)=-3.
点评:本题主要考查了余弦函数的性质,三角函数图象的平移变换法则,以及两角差的余弦公式,二次函数的单调性等,比较综合,但是难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网