题目内容
设
是定义在
上的偶函数,对
,都有
,且当
时,
,若在区间
内关于
的方程
恰有3个不同的实数根,则
的取值范围是( )
| A.(1,2) | B.(2,+∞) | C.(1, | D. |
D.
解析试题分析:因为对于任意的
,都有
,所以函数
的图象关于直线x=2对称,又因为当
时,
,且函数
是定义在R上的偶函数,若在区间
内关于x的方程
恰有3个不同的实数解,则函数
与
在区间(-2,6)上有三个不同的交点,如下图所示:![]()
又
,则有
,且
,解得
.
考点:1.指数函数与对数函数的图象与性质;2.函数的零点与方程根的关系.
练习册系列答案
相关题目
已知
且
,则下列不等式中成立的是 ( )
| A. |
| B. |
| C. |
| D. |
定义在R上的奇函数
,当
时,
,则函数
的所有零点之和为( )
| A. | B. | C. | D. |
等于( )
| A.3 | B.4 | C.5 | D.6 |
下列判断正确的是( )
| A. | B. | C. | D. |
设函数
的最小正周期为
,将
的图象向左平移
个单位得函数
的图象,则
| A. |
| B. |
| C. |
| D. |