题目内容
15.已知实数x,y满足$\left\{\begin{array}{l}{2x-y-1≤0}\\{x+y-5≥0}\\{y-4≤0}\end{array}\right.$,若不等式a(x+y)≥x-y恒成立,则实数a的取值范围是[$\frac{3}{5}$,+∞).分析 作出不等式组对应的平面区域,将不等式恒成立进行转,求出目标函数的最值即可得到结论.
解答
解:作出不等式组对应的平面区域如图:
则由图象可知x>0,y>0,
则不等式a(x+y)≥x-y恒成立,
等价为不等式a≥$\frac{x-y}{x+y}$=$\frac{x+y-2y}{x+y}$=1-2$•\frac{y}{x+y}$=1-$\frac{2}{1+\frac{y}{x}}$恒成立,
设k=$\frac{y}{x}$,则k的几何意义为区域内的点到原点的斜率,
由图象可知OA的斜率最大,OC的斜率最小,
由$\left\{\begin{array}{l}{y-4=0}\\{x+y-5=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4),
由$\left\{\begin{array}{l}{2x-y-1=0}\\{x+y-5=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即C(2,3),
则OA的斜率kOA=$\frac{4}{1}=4$,OC的斜率kOC=$\frac{3}{2}$,
故$\frac{3}{2}$≤k≤4,
则$\frac{5}{2}$≤1+k≤5,$\frac{1}{5}$≤$\frac{1}{1+k}$≤$\frac{2}{5}$,
$\frac{2}{5}$≤$\frac{2}{1+k}$≤$\frac{4}{5}$,-$\frac{4}{5}$≤-$\frac{2}{1+k}$≤-$\frac{2}{5}$,
$\frac{1}{5}$≤1-$\frac{2}{1+k}$≤$\frac{3}{5}$,
即$\frac{x-y}{x+y}$的最大值为$\frac{3}{5}$,
则a≥$\frac{3}{5}$,
故答案为:[$\frac{3}{5}$,+∞)
点评 本题主要考查线性规划的应用,根据条件将不等式进行转化求出最值是解决本题的关键.
| A. | $\frac{1+{3}^{10}}{2}$ | B. | $\frac{1-{3}^{10}}{2}$ | C. | $\frac{{3}^{10}-1}{2}$ | D. | -$\frac{1+{3}^{10}}{2}$ |
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |