题目内容

已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4
(Ⅰ)求a,b的值
(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.
(Ⅰ)∵f(x)=ex(ax+b)-x2-4x,
∴f′(x)=ex(ax+a+b)-2x-4,
∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4
∴f(0)=4,f′(0)=4
∴b=4,a+b=8
∴a=4,b=4;
(Ⅱ)由(Ⅰ)知,f(x)=4ex(x+1)-x2-4x,f′(x)=4ex(x+2)-2x-4=4(x+2)(ex-
1
2
),
令f′(x)=0,得x=-ln2或x=-2
∴x∈(-∞,-2)∪(-ln2,+∞)时,f′(x)>0;x∈(-2,-ln2)时,f′(x)<0
∴f(x)的单调增区间是(-∞,-2),(-ln2,+∞),单调减区间是(-2,-ln2)
当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网