题目内容

(2008•闵行区二模)已知A、B依次是双曲线E:x2-
y2
3
=1
的左、右焦点,C是双曲线E右支上的一点,则在△ABC中,
sinA-sinB
sinC
=
-
1
2
-
1
2
分析:首先由正弦定理,可得
sinA-sinB
sinC
=
CB-CA
AB
,进而根据双曲线的几何性质,可得|AB|=2c=4,|CB|-|CA|=-2a=-2;代入所求中,即可得答案.
解答:解:根据正弦定理:在△ABC中,有
sinA-sinB
sinC
=
CB-CA
AB

又由题意A、B分别是双曲线 x2-
y2
3
=1的左、右焦点,则|AB|=2c=4,
且△ABC的顶点C在双曲线的右支上,又可得|CB|-|CA|=-2a=-2;
sinA-sinB
sinC
=
CB-CA
AB
=
-2
4
=-
1
2

故答案为:-
1
2
点评:本题主要考查双曲线的几何性质以及计算能力和分析能力,注意点C在双曲线的右支上,则有|CA|>|CB|,即|CB|-|CA|=-2a,这是一个易错点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网