题目内容

设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f'(x)的图象经过点,如图所示,
(1)求f(x)的解析式;
(2)若对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求实数m的取值范围.
解:∵f'(x)=3ax2+2bx+c,且y=f'(x)的图象经过点(﹣2,0),,∴
∴f(x)=ax3+2ax2﹣4ax,
由图象可知函数y=f(x)在(﹣∞,﹣2)上单调递减,
上单调递增,在上单调递减,
由f(x)极小值=f(﹣2)=a(﹣2)3+2a(﹣2)2﹣4a(﹣2)=﹣8,
解得a=﹣1
∴f(x)=﹣x3﹣2x2+4x
(2)要使对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,只需f(x)min≥m2﹣14m即可.
由(1)可知函数y=f(x)在[﹣3,2)上单调递减,
上单调递增,在上单调递减
且f(﹣2)=﹣8,f(3)=﹣33﹣2×32+4×3=﹣33<﹣8
∴f(x)min=f(3)=﹣33
﹣33≥m2﹣14m,3≤m≤11
故所求的实数m的取值范围为{m|3≤m≤11}.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网