题目内容
设数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n∈N*)
(1)若bn=an+1-2an,求bn;
(2)若cn=
,求{cn}的前6项和T6;
(3)若dn=
,求数列{dn}的通项.
(1)若bn=an+1-2an,求bn;
(2)若cn=
| 1 |
| an+1-2an |
(3)若dn=
| an |
| 2n |
分析:(1)a1=1,Sn+1=4an+2(n∈N*)⇒Sn+2=4an+1+2,两式作差,结合题意即可求得bn+1=2bn,即{bn}是公比为2的等比数列,再求得b1即可求bn;
(2)可求得cn=
•(
)n-1,即{cn}是首项为
,公比为
的等比数列,于是可求{cn}的前6项和T6;
(3)依照dn=
,可证求数列{dn}为公差是
的等差数列,从而可求其通项.
(2)可求得cn=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
(3)依照dn=
| an |
| 2n |
| 3 |
| 4 |
解答:解(1)∵a1=1,Sn+1=4an+2(n∈N*)
∴Sn+2=4an+1+2,
∴an+2=Sn+2-Sn+1=4(an+1-an),
∴an+2-2an+1=2(an+1-an),
即bn+1=2bn,
∴{bn}是公比为2的等比数列,且b1=a2-2a1…(3分)
∵a1=1,a2+a1=S2,即a2+a1=4a1+2,
∴a2=3a1+2=5,
∴b1=5-2=3
∴bn=3•2n-1…(5分)
(2)cn=
=
=
,
∴c1=
,
∴cn=
•(
)n-1,
∴{cn}是首项为
,公比为
的等比数列…(8分)
∴T6=
=
(1-
)=
…(10分)
(3)∵dn=
,bn=3•2n-1,
∴dn+1-dn=
-
=
=
=
=
,
∴{dn}是等差数列
dn=
-
.…(14分)
∴Sn+2=4an+1+2,
∴an+2=Sn+2-Sn+1=4(an+1-an),
∴an+2-2an+1=2(an+1-an),
即bn+1=2bn,
∴{bn}是公比为2的等比数列,且b1=a2-2a1…(3分)
∵a1=1,a2+a1=S2,即a2+a1=4a1+2,
∴a2=3a1+2=5,
∴b1=5-2=3
∴bn=3•2n-1…(5分)
(2)cn=
| 1 |
| an+1-2an |
| 1 |
| bn |
| 1 |
| 3•2n-1 |
∴c1=
| 1 |
| 3 |
∴cn=
| 1 |
| 3 |
| 1 |
| 2 |
∴{cn}是首项为
| 1 |
| 3 |
| 1 |
| 2 |
∴T6=
| ||||
1-
|
| 2 |
| 3 |
| 1 |
| 64 |
| 61 |
| 96 |
(3)∵dn=
| an |
| 2n |
∴dn+1-dn=
| an+1 |
| 2n+1 |
| an |
| 2n |
| an+1-2an |
| 2n+1 |
| bn |
| 2n+1 |
| 3×3n-1 |
| 2n+1 |
| 3 |
| 4 |
∴{dn}是等差数列
dn=
| 3n |
| 4 |
| 1 |
| 4 |
点评:本题考查等比数列的前n项和,考查等比数列与等差数列的关系的确定,突出考查推理运算能力,属于难题.
练习册系列答案
相关题目