题目内容
已知数列an满足a1=| 1 |
| 4 |
| an-1 |
| (-1)nan-1-2 |
(1)求数列an的通项公式an;
(2)设bn=
| 1 | ||
|
(3)设cn=ansin
| (2n-1)π |
| 2 |
| 4 |
| 7 |
分析:(1)由题意知
=(-1)n-
,所以
+(-1)n=(-2)[
+(-1)n-1],再由
+(-1)=3,知数列{
+(-1)n}(n∈N*)是以3为首项,-2为公比的等比数列,由此可求出数列an的通项公式an.
(2)由题设知bn=(3×2n-1+1)2=9•4n-1+6•2n-1+1,所以Sn=9•
+6•
+n
=3•4n+6•2n+n-9.
(3)由题意知an=
,sin
=(-1)n-1,∴cn=
,Tn=
+
[1-(
)n-2] <
+
<
,再由T1<T2<T3,知对任意的n∈N*,Tn<
.
| 1 |
| an |
| 2 |
| an-1 |
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| a1 |
| 1 |
| an |
(2)由题设知bn=(3×2n-1+1)2=9•4n-1+6•2n-1+1,所以Sn=9•
| 1•(1-4n) |
| 1-4 |
| 1•(1-2n) |
| 1-2 |
=3•4n+6•2n+n-9.
(3)由题意知an=
| (-1)n-1 |
| 3•2n-1+1 |
| (2n-1) |
| 2 |
| 1 |
| 3•2n-1+1 |
| 11 |
| 28 |
| 1 |
| 6 |
| 1 |
| 2 |
| 11 |
| 28 |
| 1 |
| 6 |
| 4 |
| 7 |
| 4 |
| 7 |
解答:解:(1)∵
=(-1)n-
,∴
+(-1)n=(-2)[
+(-1)n-1],
又∵
+(-1)=3,所以数列{
+(-1)n}(n∈N*)是以3为首项,-2为公比的等比数列,
∴an=
.
(2)bn=(3×2n-1+1)2
=9•4n-1+6•2n-1+1,
∴Sn=9•
+6•
+n
=3•4n+6•2n+n-9.
(3)证明:由(1)知an=
,sin
=(-1)n-1,∴cn=
,当n≥3时,则Tn=
+
+
++
<
+
+
+
++
=
+
=
+
[1-(
)n-2]<
+
=
<
=
又∵T1<T2<T3,
∴对任意的n∈N*,Tn<
.(12分)
| 1 |
| an |
| 2 |
| an-1 |
| 1 |
| an |
| 1 |
| an-1 |
又∵
| 1 |
| a1 |
| 1 |
| an |
∴an=
| (-1)n-1 |
| 3×2n-1+1 |
(2)bn=(3×2n-1+1)2
=9•4n-1+6•2n-1+1,
∴Sn=9•
| 1•(1-4n) |
| 1-4 |
| 1•(1-2n) |
| 1-2 |
=3•4n+6•2n+n-9.
(3)证明:由(1)知an=
| (-1)n-1 |
| 3•2n-1+1 |
| (2n-1) |
| 2 |
| 1 |
| 3•2n-1+1 |
| 1 |
| 3+1 |
| 1 |
| 3•2+1 |
| 1 |
| 3•22+1 |
| 1 |
| 3•2n-1+1 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3•22 |
| 1 |
| 3•23 |
| 1 |
| 3•2n-1 |
=
| 11 |
| 28 |
| ||||
1-
|
| 11 |
| 28 |
| 1 |
| 6 |
| 1 |
| 2 |
| 11 |
| 28 |
| 1 |
| 6 |
| 47 |
| 84 |
| 48 |
| 84 |
| 4 |
| 7 |
又∵T1<T2<T3,
∴对任意的n∈N*,Tn<
| 4 |
| 7 |
点评:本题考查数列的应用和性质,解题时要认真审题,注意公式的灵活运用,注意积累解题方法.
练习册系列答案
相关题目