题目内容

已知函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n(nN*).

(1)求f(x)的解析式;

(2)若数列{an}满足=f′(),且a1=4,试求{an}的通项公式;

(3)对(2)中数列{an},设Sn=a1+a2+…+an,求证:Sn<5.

(1)解:由f(x)的图象过(-4n,0),得b=4an.?

f′(x)=2ax+b,由f′(0)=2n,得b=2n.?

所以a=,b=2n,即f(x)=x2+2nx.                                                                    ?

(2)解:由=f′()得=+2n,即=+2(n-1),?

=+2(n-2),?

……?

=+2×1,?

叠加各式得=+2(1+2+…+n-1)?

=+n(n-1).?

所以an=.                                                                                            ?

(3)证明:∵ (n≥2),                                                            ?

Sn=a1+a2+…+an<4+++…+?

=4+(1-)+(-)+…+(-)?

=5-<5.?

Sn<5.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网