题目内容
已知各项均为正数的数列{an}的前n项和满足Sn>1,且6Sn=(an+1)(an+2),n∈N*,
(1)求数列{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)设bn=
| 1 | an•an+1 |
分析:(1)由6Sn=
+3an+2,知6Sn-1=
+3an-1+2,两式作差,即可证明{an}为等差数列,从而求出an.
(2)由an=3n-1,推导出bn=
=
(
-
),由此利用裂项求和法能求出数列{bn}的前n项.
| a | 2 n |
| a | 2 n-1 |
(2)由an=3n-1,推导出bn=
| 1 |
| an•an+1 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
解答:解:(1)∵6Sn=
+3an+2,
∴6Sn-1=
+3an-1+2,
∴6an=
+3an-
-3an-1,
∴(an+an-1)(an-an-1-3)=0,
∵an>0,∴an-an-1=3,∴{an}为等差数列,…(3分)
∵6S1=
+3a1+2,
∴
-3a1+2=0,
∵a1>1,∴a1=2,
∴an=3n-1,…(6分)
(2)∵an=3n-1,
∴bn=
=
=
(
-
).…(9分)
∴数列{bn}的前n项和
Tn=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)
=
.…(12分)
| a | 2 n |
∴6Sn-1=
| a | 2 n-1 |
∴6an=
| a | 2 n |
| a | 2 n-1 |
∴(an+an-1)(an-an-1-3)=0,
∵an>0,∴an-an-1=3,∴{an}为等差数列,…(3分)
∵6S1=
| a | 2 1 |
∴
| a | 2 1 |
∵a1>1,∴a1=2,
∴an=3n-1,…(6分)
(2)∵an=3n-1,
∴bn=
| 1 |
| an•an+1 |
=
| 1 |
| (3n-1)(3n+2) |
=
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
∴数列{bn}的前n项和
Tn=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3n+2 |
=
| n |
| 6n+4 |
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意迭代法和裂项求和法的合理运用.
练习册系列答案
相关题目