题目内容
已知函数f(x)=2cos2x+
sin2x+a(a∈R).
(1)若x∈R,求f(x)的单调递增区间;
(2)若x∈[0,
]时,f(x)的最大值为4,求a的值.
| 3 |
(1)若x∈R,求f(x)的单调递增区间;
(2)若x∈[0,
| π |
| 2 |
(1)f (x)=
sin2x+cos2x+a+1=2sin(2x+
)+a+1
解不等式2kπ-
≤2x+
≤2kπ+
,
得kπ-
≤x≤kπ+
(k∈Z)
∴f (x)的单调递增区间为[kπ-
≤x≤kπ+
.(k∈Z).
(2)若0≤x≤
,
则
≤2x+
≤
,
则当2x+
=
,
即x=时,f (x)取得最大值.
∴a+3=4,a=1.
| 3 |
| π |
| 6 |
解不等式2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
得kπ-
| π |
| 3 |
| π |
| 6 |
∴f (x)的单调递增区间为[kπ-
| π |
| 3 |
| π |
| 6 |
(2)若0≤x≤
| π |
| 2 |
则
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
则当2x+
| π |
| 6 |
| π |
| 2 |
即x=时,f (x)取得最大值.
∴a+3=4,a=1.
练习册系列答案
相关题目