题目内容
数列{an}中,已知 a1=1,an+1=an+
,求an.
| n+1 | 2n |
分析:将已知化为an+1-an=
,再用叠加法求通项.
| n+1 |
| 2n |
解答:解:由已知可得:an+1-an=
即 a2-a1=
a3-a2=
…
an-an-1=
(n≥2)
叠加后可得:an-a1=
+
+
+…+
设 S=
+
+
+…+
(1)
则 2S=
+
+
+…+
(2)
(2)-(1)得:S=2+
+
+
+…+
-
=2+
-
=3-
则 an=4-
(n≥2)对n=1时也符合.
故an=4-
(n≥1)
| n+1 |
| 2n |
即 a2-a1=
| 2 |
| 21 |
a3-a2=
| 3 |
| 22 |
…
an-an-1=
| n |
| 2n-1 |
叠加后可得:an-a1=
| 2 |
| 21 |
| 3 |
| 22 |
| 4 |
| 23 |
| n |
| 2n-1 |
设 S=
| 2 |
| 21 |
| 3 |
| 22 |
| 4 |
| 23 |
| n |
| 2n-1 |
则 2S=
| 2 |
| 20 |
| 3 |
| 21 |
| 4 |
| 22 |
| n |
| 2n-2 |
(2)-(1)得:S=2+
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-2 |
| n |
| 2n-1 |
=2+
| ||||
1-
|
| n |
| 2n-1 |
| n+2 |
| 2n-1 |
则 an=4-
| n+2 |
| 2n-1 |
故an=4-
| n+2 |
| 2n-1 |
点评:本题考查叠加法求通项.凡是形如a n+1-a n=f(n),且{f(n)}能求和,均可用叠加法求通项.
练习册系列答案
相关题目