题目内容
(2009•黄冈模拟)向量
、
、
满足
+
+
=0,
⊥
,(
-
)⊥
,M=
+
+
,则M=
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| a |
| b |
| c |
| |a| |
| |b| |
| |b| |
| |c| |
| |c| |
| |a| |
1+
3
| ||
| 2 |
1+
.3
| ||
| 2 |
分析:欲求M的值,须先判断
,
,
三向量的关系,根据
+
+
=0,把
用
,
表示,就可得出
,
的模相等,再代入M的表达式,化简,即可求出M的值.
| a |
| b |
| c |
| a |
| b |
| c |
| c |
| a |
| b |
| a |
| b |
解答:解:∵
+
+
=0,∴
=-(
+
)
∵(
-
)⊥
,∴(
-
)•
=0,
即(
-
)•[ -(
+
)]=0,∴|
|=|
|,
∴M=
+
+
+=1+
+
=1+
+
=1+
+
=1+
故答案为1+
| a |
| b |
| c |
| c |
| a |
| b |
∵(
| a |
| b |
| c |
| a |
| b |
| c |
即(
| a |
| b |
| a |
| b |
| a |
| b |
∴M=
|
| ||
|
|
|
| ||
|
|
|
| ||
|
|
|
| ||
|
|
|
| ||
|
|
|
| ||||||
|
|
|
| ||||
|
|
| ||
| 2 |
| 2 |
3
| ||
| 2 |
故答案为1+
3
| ||
| 2 |
点评:本题主要考查了向量的数量积的坐标运算,向量的模的求法,属于易错题.
练习册系列答案
相关题目