题目内容
已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
}的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
a)对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
| 1 |
| log2bn+1•log2bn+2 |
| 1 |
| 2 |
(1)∵an+1=an2+2an,∴an+1+1=an2+2an+1,∴
=2log2(an+1),
∵bn=log2(an+1),∴
=2,∴数列{bn}为等比数列.
(2)∵数列{bn}为等比数列,b1=1,q=2,∴bn=2n-1,∴
=
=
-
,
∴Tn=1-
+
-
+…+
-
=1-
<1,∵不等式Tn<log0.5(a2-
a)对?n∈N+恒成立,
只要 log0.5(a2-
a)≥1=log0.50.5 即可,即
,即
,
解得-
≤a<0,或
<a≤1,故a的取值范围 为[-
,0)∪(
,1].
| log | (an+1+1)2 |
∵bn=log2(an+1),∴
| bn+1 |
| bn |
(2)∵数列{bn}为等比数列,b1=1,q=2,∴bn=2n-1,∴
| 1 |
| log2bn+1•log2bn+2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| 2 |
只要 log0.5(a2-
| 1 |
| 2 |
|
|
解得-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目