题目内容
已知数列{an}的前n项和为Sn,且2Sn=2-(2n-1)an(n∈N*)(1)设bn=(2n+1)Sn,求数列{bn}的通项公式;
(2)证明:
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 2 |
分析:(1)根据2Sn=2-(2n-1)an(n∈N*)再结合当n≥2时an=sn-sn-1可化为(2n+1)sn=(2n-3)sn即bn=bn-1+2则{bn}为等差数列再求出b1利用等差数列的通项公式即可得解.
(2)由于
<
=
=
(
-
)故代入化简即可证得结果.
(2)由于
| 1 |
| bn2 |
| 1 |
| bn2-1 |
| 1 |
| 4n2- 1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:(1)∵当n≥2sn=1-
(sn -sn-1)
∴(2n+1)sn=(2n-3)sn即bn=bn-1+2,,
又∵b1=3×s1=3×
=2
∴bn=2+2(n-1)=2n
(2)∵
<
∴
+…+
<
+
+…+
=
+
+…+
=
(1-
+
-
+…+
-
)
=
(1-
)<
| (2n-1) |
| 2 |
∴(2n+1)sn=(2n-3)sn即bn=bn-1+2,,
又∵b1=3×s1=3×
| 2 |
| 3 |
∴bn=2+2(n-1)=2n
(2)∵
| 1 |
| bn2 |
| 1 |
| bn2-1 |
∴
| 1 |
| b12 |
| 1 |
| bn2 |
| 1 |
| 22- 1 |
| 1 |
| 42-1 |
| 1 |
| 2n2-1 |
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| (2n-1)×(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
点评:此题第一问主要考查了利用数列的递推公式求数列的通项公式.此问的关键是利用当n≥2时an=sn-sn-1这一条件代入递推关系式化简为bn=bn-1+2.而第二问的解题关键是对
<
=
=
(
-
)的变形!
| 1 |
| bn2 |
| 1 |
| bn2-1 |
| 1 |
| 4n2- 1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |