题目内容
已知数列{an}的前n项和Sn满足Sn-Sn-2=(-| 1 |
| 2 |
| 3 |
| 2 |
分析:由题设条件知S2n=S2-3[(
)2n-1+(
)2n-3]+…+(
)3 ]=-2+(
)2n-1.S2n+1=S1+3[(
)2n+(
)2n-2+…+ (
)2]=2-(
)2n.n≥1
所以a2n+1=S2n+1-S2n=4-3×(
)2n,n≥1,a2n=S2n-S2n-1=-4+3× (
)2n-1 ,n≥1.a1=S1=1,
由此可知an=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
所以a2n+1=S2n+1-S2n=4-3×(
| 1 |
| 2 |
| 1 |
| 2 |
由此可知an=
|
解答:解:先考虑偶数项,有:S2n-S2n-2=3×(-
)2n-1=-3×(
)2n-1,
S2n-2-S2n-4=-3×(
)2n-3,…,S4-S2=-3×(
)3,
∴S2n=S2-3[(
)2n-1+(
)2n-3]+…+(
)3 ]=-2+(
)2n-1.
同理考虑奇数项有S2n+1=3×(
)2n,S2n-1=3×(
)2n-2,…,S3-S1=3×(
)2,
∴S2n+1=S1+3[(
)2n+(
)2n-2+…+ (
)2]=2-(
)2n.n≥1
∴a2n+1=S2n+1-S2n=4-3×(
)2n,n≥1,a2n=S2n-S2n-1=-4+3× (
)2n-1 ,n≥1.a1=S1=1,
∴an=
.
| 1 |
| 2 |
| 1 |
| 2 |
S2n-2-S2n-4=-3×(
| 1 |
| 2 |
| 1 |
| 2 |
∴S2n=S2-3[(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
同理考虑奇数项有S2n+1=3×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴S2n+1=S1+3[(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴a2n+1=S2n+1-S2n=4-3×(
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
|
点评:本题考查数列的性质,解题时要注意计算能力的培养.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |