题目内容
已知等差数列{an}中,a1=1,公差d=2,则数列{
}的前n项和为
.
| 1 |
| anan+1 |
| n |
| 2n+1 |
| n |
| 2n+1 |
分析:写出an,
,利用裂项相消法可求得数列{
}的前n项和.
| 1 |
| anan+1 |
| 1 |
| anan+1 |
解答:解:an=1+(n-1)×2=2n-1,
则
=
=
(
-
),
所以
+
+…+
=
(1-
)+
(
-
)+…+
(
-
)
=
(1-
+
-
+…+
-
)
=
(1-
)=
;
故答案为:
.
则
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
故答案为:
| n |
| 2n+1 |
点评:本题考查等差数列的通项公式、裂项相消法对数列求和,属中档题.
练习册系列答案
相关题目